Final First Quarter 2015 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells

Red Hill Bulk Fuel Storage Facility
Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

DOH Facility ID: 9-102271

DOH Release ID: 990051, 010011, 020028, and 140010

March 2015

Department of the Navy Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH HI 96860-3139

Contract Number N62742-12-D-1853, CTO 0002

Final First Quarter 2015 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells

Red Hill Bulk Fuel Storage Facility
Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

DOH Facility ID: 9-102271

DOH Release ID: 990051, 010011, 020028, and 140010

March 2015

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH, HI 96860-3139

Prepared by:

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734

Prepared under:

Contract Number N62742-12-D-1853, CTO 0002

FINAL FIRST QUARTER 2015 - QUARTERLY GROUNDWATER MONITORING REPORT INSIDE TUNNEL WELLS RED HILL BULK FUEL STORAGE FACILITY

Long-Term Groundwater and Soil Vapor Monitoring Red Hill Bulk Fuel Storage Facility Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

Prepared for:

Department of the Navy
Commanding Officer, Naval Facilities Engineering Command, Hawaii
400 Marshall Road
JBPHH, HI 96860-3139

Prepared by:

Environmental Science International, Inc. 354 Uluniu Street, Suite 304
Kailua, HI 96734
(808) 261-0740

Prepared under:

Contract Number: N62742-12-D-1853 Contract Task Order: 0002

1

Approval Signature:) as the second	3/13/2015
	Scott Simmons, ESI Project Manager	Date
	To vo do for the	
Approval Signature:		3/13/2015
	Iris van der Zander ESLOA Manager	Date

Contract Task Order 0002

This Page Intentionally Left Blank.

Contract No. N62742-12-D-1853

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u>	<u>Page</u>
ES	EXECUTIVE SUMMARY	ES-1
1.0	INTRODUCTION	1-1
1.1	Site Description	1-1
1.2	Physical Settings	1-2
1.3	Background	1-4
2.0	GROUNDWATER SAMPLING	2-1
2.1	Groundwater Sampling	2-1
2.2	Analytical Results	2-2
2.3	Groundwater Contaminant Trends	2-2
2.4	Waste Disposal	2-3
3.0	DATA QUALITY ASSESSMENT	3-1
3.1	Data Validation and Assessment	3-1
3.2	Data Assessment and Usability Conclusions	3-5
4.0	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	4-1
5.0	FUTURE WORK	5-1
6.0	REFERENCES	6-1
	LIST OF TABLES	
Number	Title	Page
Accessor and a second and a second assessment		
1.1 2.1 3.1	Current Status of USTs Analytical Results for Groundwater Sampling (January 27 and 28, 2015) Quality Control Results for Groundwater Sampling (January 27 and 28, 2015)	1-2 2-5 3-7
	LIST OF FIGURES	
<u>Number</u>	<u>Title</u>	
1	Site Location	
2	Site Layout	

Red Hill LTM, 1Q2015 Status Report Inside Tunnel Wells

Page vii

March 2015

APPENDICES

<u>Appendix</u>	<u>Title</u>
Α	Groundwater Sampling Logs
В	Field Notes
С	Laboratory Reports
D	Historical Groundwater Exceedance Trends
E	Cumulative Groundwater Results (on attached CD)

ACRONYMS AND ABBREVIATIONS

ACRONYMS/ **ABBREVIATIONS DEFINITION/MEANING**

below ground surface bgs

COPC Contaminant of Potential Concern

State of Hawaii Department of Land and Natural Resources DLNR

DoD Department of Defense

DOH State of Hawaii Department of Health

DON Department of the Navv EAL **Environmental Action Level EPA Environmental Protection Agency**

FSI Environmental Science International, Inc.

F-76 Marine Diesel Fuel Identification ID

JBPHH Joint Base Pearl Harbor-Hickam

JP-5 Jet Fuel Propellant-5 JP-8 Jet Fuel Propellant-8 LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

Limit of Detection LOD LOQ Limit of Quantitation µg/L micrograms per liter

MS Matrix Spike

Matrix Spike Duplicate MSD

NAVFAC Naval Facilities Engineering Command

NAVSUP FLC Naval Supply Systems Command Fleet Logistics Center

PAH Polycyclic Aromatic Hydrocarbons

PARCCS Precision, Accuracy, Representativeness, Completeness, Comparability,

and Sensitivity

hydrogen activity рΗ

RHSF Red Hill Bulk Fuel Storage Facility **RPD** Relative Percent Difference SAP Sampling and Analysis Plan SSRBL Site-Specific Risk-Based Level TEC The Environmental Company, Inc. TPH Total Petroleum Hydrocarbons

Total Petroleum Hydrocarbons as diesel fuel TPH-d Total Petroleum Hydrocarbons as gasoline TPH-g

U.S. United States of America UST Underground Storage Tank VOC Volatile Organic Compound

WP Work Plan

Contract No. N62742-12-D-1853	Contract Task Order 0002
This Page Intentional	ly Left Blank.

EXECUTIVE SUMMARY

This quarterly groundwater monitoring report presents the results of the first quarter 2015 groundwater sampling event, conducted on January 27 and 28, 2015, at the Red Hill Bulk Fuel Storage Facility [RHSF], Joint Base Pearl Harbor-Hickam [JBPHH], Hawaii. The RHSF is located in Halawa Heights on the Island of Oahu. There are 18 active and 2 inactive Underground Storage Tanks [USTs] located at the RHSF. The State of Hawaii Department of Health [DOH] Facility Identification [ID] number is 9-102271. The DOH Release ID numbers are 990051, 010011, 020028, and 140010.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring program at the RHSF and concurrent with release response activities initiated at Tank 5 in January 2014, under Naval Facilities Engineering Command [NAVFAC] Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved 2012 Work Plan [WP]/Sampling and Analysis Plan [SAP] prepared by Environmental Science International, Inc. [ESI].

On January 27 and 28, 2015, ESI personnel collected groundwater samples from four monitoring wells at the RHSF (wells RHMW01, RHMW02, RHMW03, and RHMW05) and one sampling point at Red Hill Shaft (RHMW2254-01). A primary and duplicate sample were collected from well RHMW02. A summary of the analytical results is provided below.

- RHMW01 Total Petroleum Hydrocarbons as diesel fuel [TPH-d] (33 micrograms per liter [μg/L]) and lead (0.631 μg/L) were the only analytes detected. The concentrations did not exceed the DOH Environmental Action Level [EAL] or the site-specific risk-based level [SSRBL] of 4,500 μg/L for Total Petroleum Hydrocarbons [TPH]. TPH-d concentrations in this well have shown an overall decreasing trend from a high of 1,500 μg/L in February 2005.
- RHMW02 TPH-d (1,100 and 1,700 μg/L), Total Petroleum Hydrocarbons as gasoline [TPH-g] (54 and 59 μg/L), xylenes (0.35 μg/L in both primary and duplicate samples), acenaphthene (0.59 and 0.55 μg/L), ethylbenzene (0.16 and 0.17 μg/L), fluorene (0.30 and 0.22 μg/L), 1-methylnaphthalene (34 and 25 μg/L), 2-methylnaphthalene (7.6 and 2.7 μg/L), and naphthalene (90 and 63 μg/L) were detected. TPH-d was detected at concentrations above the DOH EALs for both drinking water toxicity and gross contamination, but below half the SSRBL. The polycyclic aromatic hydrocarbons [PAHs] 1-methylnaphthalene and naphthalene were detected at concentrations above the DOH EALs for both drinking water toxicity and gross contamination. The concentrations of TPH-d, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene decreased from the previous sampling event in October 2014.
- RHMW03 TPH-d (39 μg/L) was the only analyte detected. The concentration did not exceed the DOH EALs or the SSRBL.
- RHMW05 None of the chemical constituents analyzed for were detected at a concentration at or above the limit of detection [LOD].

Red Hill LTM, 1Q2015 Status Report Inside Tunnel Wells

ES-1

 RHMW2254-01 – None of the chemical constituents analyzed for were detected at a concentration at or above the LOD.

During this quarterly event, the concentrations of TPH-d, 1-methylnaphthalene, and naphthalene in RHMW02 exceeded the DOH EALs for both gross contamination and drinking water toxicity. The concentration of TPH-d in RHMW01 decreased from the previous event in October 2014 to a concentration below the DOH EALs. Groundwater contaminant concentrations in RHMW03, RHMW05, and RHMW2254-01 remained at low concentrations and did not change significantly from the previous event, or were not detected.

Concentrations of 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene in RHMW02 had shown an increasing trend between March and October 2014; however, concentrations of these three analytes and TPH-d all decreased since the previous event in October 2014. All other analytical results were generally consistent with historical data.

Based on the groundwater monitoring results and the reported release at Tank 5 in January 2014, continued groundwater monitoring at the wells inside the RHSF tunnel is recommended. The next quarterly event is tentatively scheduled for April 2015.

SECTION 1 – INTRODUCTION

This quarterly groundwater monitoring report presents the results of the first quarter 2015 groundwater sampling conducted on January 27 and 28, 2015, at the RHSF, JBPHH. The RHSF is located in Halawa Heights on the Island of Oahu. The purpose of the sampling is to (1) assess the condition of groundwater beneath the RHSF with respect to chemical constituents associated with jet fuel propellant and marine diesel fuel, and (2) to ensure the Navy remains in compliance with DOH UST release response requirements as described in Hawaii Administrative Rules Chapter 11-281 Subchapter 7, *Release Response Action* (DOH, 2013). The DOH Facility ID number for the RHSF is 9-102271. The DOH Release ID numbers are 990051, 010011, 020028, and 140010.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring program at the RHSF, under NAVFAC Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved WP/SAP prepared by ESI (ESI, 2012).

1.1 SITE DESCRIPTION

The RHSF is located on federal government land (zoned F1- Military and Federal), located in Halawa Heights, approximately 2.5 miles northeast of Pearl Harbor (Figure 1). It is located on a low ridge on the western edge of the Koolau Mountain Range that divides Halawa Valley from Moanalua Valley. The RHSF is bordered on the north by Halawa Correctional Facility and private businesses, on the southwest by the United States of America [U.S.] Coast Guard reservation, on the south by residential neighborhoods, and on the east by Moanalua Valley. A quarry is located less than a quarter mile away to the northwest. The RHSF occupies 144 acres of land and the majority of the site is at an elevation of approximately 200 to 500 feet above mean sea level.

The RHSF contains 18 active and 2 inactive USTs that are operated by Naval Supply Systems Command Fleet Logistics Center [NAVSUP FLC] Pearl Harbor (formerly Fleet and Industrial Supply Center). Each UST has a capacity of approximately 12.5 million gallons. The RHSF is located approximately 100 feet above the basal aquifer. The USTs contain Jet Fuel Propellant-5 [JP-5], Jet Fuel Propellant-8 [JP-8], and Marine Diesel Fuel [F-76]. The current status of the USTs are summarized in Table 1.1.

Four groundwater monitoring wells (wells RHMW01, RHMW02, RHMW03, and RHMW05) and one sampling point at Red Hill Shaft (RHMW2254-01) are located within the RHSF lower access tunnel (Figure 2). Three groundwater monitoring wells (wells HDMW2253-03, OWDFMW01, and RHMW04) are located outside of the RHSF tunnel system. Monitoring data for the three wells located outside the tunnel are included in a separate report.

As noted, monitoring wells RHMW01, RHMW02, RHMW03, and RHMW05 are located inside the underground tunnels. Sampling point RHMW2254-01 is located inside the infiltration gallery of the Department of the Navy [DON] drinking water supply Well 2254-01. The DON Well 2254-01 is located approximately 2,400 feet downgradient of the USTs and provides potable water to the JBPHH Water System, which serves approximately 65,200 military customers. NAVFAC Public Works Department operates the infiltration gallery and DON Well 2254-01.

TABLE 1.1
Current Status of the USTs
Red Hill Bulk Fuel Storage Facility
January 2015 Quarterly Monitoring Report

Tank Identification	Fuel Type	Status	Capacity
F-1	None	Inactive	12.5 million gallons
F-2	JP-8	Active	12.5 million gallons
F-3	JP-8	Active	12.5 million gallons
F-4	JP-8	Active	12.5 million gallons
F-5	JP-8	Active	12.5 million gallons
F-6	JP-8	Active	12.5 million gallons
F-7	JP-5	Active	12.5 million gallons
F-8	JP-5	Active	12.5 million gallons
F-9	JP-5	Active	12.5 million gallons
F-10	JP-5	Active	12.5 million gallons
F-11	JP-5	Active	12.5 million gallons
F-12	JP-5	Active	12.5 million gallons
F-13	F-76	Active	12.5 million gallons
F-14	F-76	Active	12.5 million gallons
F-15	F-76	Active	12.5 million gallons
F-16	F-76	Active	12.5 million gallons
F-17	JP-5	Active	12.5 million gallons
F-18	JP-5	Active	12.5 million gallons
F-19	None	Inactive	12.5 million gallons
F-20	JP-5	Active	12.5 million gallons

F-76 Marine Diesel Fuel

1.2 PHYSICAL SETTING

Climatological conditions in the area of the RHSF consist of warm to moderate temperatures and low to moderate rainfall. The RHSF is leeward of the prevailing northeasterly trade winds. The average annual precipitation is approximately 40 inches, which occurs mainly between November and April (State of Hawaii Department of Land and Natural Resources [DLNR], 1986). Annual pan evaporation is approximately 75 inches (DLNR, 1985). Average temperatures range from the low 60's to high 80's (degrees Fahrenheit) (Atlas of Hawaii, 1983).

Oahu consists of the eroded remnants of two shield volcanoes, Waianae and Koolau. The RHSF is located on the southwest flank of the Koolau volcanic shield. Lavas erupted during the shield-building phase of the volcano belong to the *Koolau Volcanic Series* (Stearns and Vaksvik,

JP-5 Jet Fuel Propellant-5

JP-8 Jet Fuel Propellant-8

1935). Following formation of the Koolau shield, a long period of volcanic quiescence occurred, during which the shield was deeply eroded. Following this erosional period, eruptive activity resumed. Lavas and pyroclastic material erupted during this period belong to the *Honolulu Volcanic Series* (Stearns and Vaksvik, 1935).

In the immediate area of the RHSF, Koolau Volcanic Series lavas dominate, although there are consolidated and unconsolidated non-calcareous deposits in the vicinity that consist of alluvium generated during erosion of the Koolau volcanic shield. South-southwest of the RHSF, and in isolated exposures to the west, are pyroclastic deposits formed during eruptions from three Honolulu Volcanic Series vents, Salt Lake, Aliamanu, and Makalapa (Stearns and Vaksvik, 1935). Based on established geology and records of wells drilled at the RHSF (Stearns and Vaksvik, 1938), the RHSF is underlain by Koolau Volcanic Series basalts. The area of the RHSF is classified as *Rock Land*, where 25-90% of the land surface is covered by exposed rock and there are only shallow soils (Foote, et al., 1972).

Groundwater in Hawaii exists in two principal aquifer types. The first and most important type, in terms of drinking water resources, is the basal aquifer. The basal aquifer exists as a lens of fresh water floating on and displacing seawater within the pore spaces, fractures, and voids of the basalt that forms the underlying mass of each Hawaiian island. In parts of Oahu, groundwater in the basal aquifer is confined by the overlying caprock and is under pressure. Waters that flow freely to the surface from wells that tap the basal aquifer are referred to as artesian.

The second type of aquifer is the caprock aquifer, which consists of various kinds of unconfined and semi-confined groundwater. Commonly, the caprock consists of a thick sequence of nearly impermeable clays, coral, and basalt, that separates the caprock aquifer from the basal aquifer. The impermeable nature of these materials and the artesian nature of the basal aquifer severely restrict the downward migration of groundwater from the upper caprock aquifer. However, in the area of the RHSF, there is no discernible caprock.

Groundwater in the area of the RHSF is part of the *Waimalu Aquifer System* of the *Pearl Harbor Aquifer Sector*. The aquifer is classified as a basal, unconfined, flank-type; and is currently used as a drinking water source. The aquifer is considered fresh, with less than 250 milligrams per liter of chloride, and is considered an irreplaceable resource with a high vulnerability to contamination (Mink and Lau, 1990).

The nearest drinking water supply well is DON Well 2254-01, located in the infiltration gallery within the RHSF lower tunnel. The DON Well 2254-01 is located approximately 2,400 feet hydraulically and topographically downgradient of the USTs (Figure 2).

1.3 BACKGROUND

The RHSF was constructed by the U.S. Government in the early 1940s. Twenty USTs and a series of tunnels were constructed. The USTs were constructed of steel, and in the past have stored DON special fuel oil, DON distillate, aviation gasoline, and motor gasoline (Environet, 2010). The tanks currently contain JP-5, JP-8, and F-76. The fueling system is a self-contained underground unit that was installed into native rock comprised primarily of basalt with some interbedded tuffs and breccias (Environet, 2010). Each UST measures approximately 250 feet in height and 100 feet in diameter. The upper domes of the tanks lie at a depth varying between 100 feet and 200 feet below ground surface [bgs].

In 1998, Earth Tech conducted a Phase II Remedial Investigation/Feasibility Study for the Oily Waste Disposal Facility located within the RHSF. The study included the installation of well OWDFMW01 (which was originally MW08) (Earth Tech, 1999).

In February 2001, the DON installed groundwater monitoring well RHMW01 to monitor for contamination in the basal aquifer beneath the RHSF. Well RHMW01 was installed approximately 100 feet below grade within the lower access tunnel. The depth to water was measured at 86 feet below the tunnel floor at the time of the well completion. In February 2001, a groundwater sample was collected from the well. TPH and total lead were detected in the sample. Total lead was detected at a concentration above the DOH Tier 1 groundwater action level of $5.6 \mu g/L$ (The Environmental Company, Inc. [TEC], 2009; DOH, 2000).

In 2005, the RHSF groundwater monitoring program was initiated. It involved routine groundwater sampling of well RHMW01 and sampling point RHMW2254-01. Samples were collected in February, June, September, and December of 2005. Lead was detected at concentrations above the DOH Tier 1 action level of 5.6 µg/L in samples collected in February and June. The samples collected in February and June were not filtered prior to analysis, whereas the samples collected in September and December were filtered prior to analysis. Since the samples collected in February and June were not filtered prior to analysis, the lead results were not considered appropriate for a risk assessment (TEC, 2008).

Between June and September 2005, TEC installed three additional groundwater monitoring wells (wells RHMW02, RHMW03, and RHMW04) (TEC, 2008). Well RHMW04 was installed hydraulically upgradient of the USTs to provide background geochemistry information for water moving through the basal aquifer beneath the RHSF. Wells RHMW02 and RHMW03 were installed approximately 125 feet below grade within the RHSF lower tunnel and well RHMW04 was installed to a depth of approximately 300 feet bgs outside of the RHSF tunnels. In September 2005, groundwater samples were collected from the three newly installed groundwater monitoring wells (wells RHMW02, RHMW03, and RHMW04) along with the existing well RHMW01 and sampling point RHMW2254-01. The contaminants of potential concern [COPCs] with concentrations exceeding current DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EALs.
- RHMW02 TPH-g, TPH-d, naphthalene, trichloroethylene, 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations above their respective DOH EAL.
- RHMW03 TPH-d was detected at concentrations above the DOH EALs.

In 2006, TEC installed dedicated sampling pumps in the four wells (wells RHWM01, RHWM02, RHMW03, and RHWM04) and one sampling point (RHMW2254-01). In July and December of 2006, groundwater samples were collected from the four wells and the sampling point. The COPCs with concentrations exceeding current DOH EALs are summarized below.

- RHMW01 TPH-d and naphthalene were detected at concentrations above their respective DOH EAL.
- RHMW02 TPH-g, TPH-d, and naphthalene were detected at concentrations above their respective DOH EAL.
- RHMW03 TPH-d was detected at concentrations above the DOH EALs.

In 2007, SSRBLs were established for TPH (4,500 μ g/L) and benzene (750 μ g/L) based on the solubility in water of JP-5 and JP-8 (TEC, 2007). Groundwater samples were collected from wells RHWM01, RHWM02, and RHMW03, and sampling point RHMW2254-01. Samples were collected in March, June, and September of 2007. The COPCs with concentrations exceeding current DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EALs, but below the SSRBL.
- RHMW02 TPH-g, TPH-d, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations above their respective DOH EAL. The TPH-d concentrations were below the SSRBL.
- RHMW03 TPH-d was detected at concentrations above the DOH EALs, but below the SSRBL.

In 2008, groundwater samples were collected from wells RHWM01, RHWM02, and RHMW03, and sampling point RHMW2254-01. Samples were collected in January, April, July, and October of 2008. The COPCs with concentrations exceeding current DOH EALs are summarized below. In addition, a groundwater protection plan (TEC, 2008) was prepared.

- RHMW01 TPH-d was detected at concentrations above the DOH EALs, but below the SSRBL.
- RHMW02 TPH-d, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were
 detected at concentrations above their respective DOH EAL. The TPH-d concentrations
 detected in October 2008 were also above the SSRBL.

 RHMW03 – TPH-d was detected at concentrations above the DOH EALs, but below the SSRBL.

In April 2009, groundwater monitoring well RHMW05 was installed downgradient of the USTs, within the lower access tunnel between RHMW01 and RHMW2254-01. It was installed to identify the extent of contamination hydraulically downgradient of the USTs. Well RHMW05 was added to the quarterly groundwater sampling program. In 2009, quarterly groundwater samples were collected from wells RHWM01, RHWM02, RHMW03, and RHMW05, and sampling point RHMW2254-01. Samples were collected in February, May, July, and October of 2009. The COPCs with concentrations exceeding current DOH EALs are summarized below. In addition, the Groundwater Protection Plan was revised to include well RHMW05.

- RHMW01 TPH-d and 1-methylnaphthalene were detected at concentrations above their respective DOH EAL. The TPH-d concentrations were below the SSRBL.
- RHMW02 TPH-d, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations above their respective DOH EAL. The TPH-d concentrations were below the SSRBL.
- RHMW03 TPH-d was detected at a concentration above the DOH EALs, but below the SSRBL.
- RHMW05 TPH-d was detected at a concentration above the DOH EALs, but below the SSRBL.

In 2010, groundwater samples were collected from wells RHWM01, RHWM02, RHMW03, and RHMW05, and sampling point RHMW2254-01. Samples were collected in January, April, July, and October. The COPCs with concentrations exceeding current DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EALs, but below the SSRBL.
- RHMW02 TPH-g, TPH-d, naphthalene, and 1-methylnaphthalene were detected at concentrations above their respective DOH EAL. The TPH-d concentrations were below the SSRBL.
- RHMW03 TPH-d was detected at a concentration above the DOH EALs, but below the SSRBL.
- RHMW05 TPH-d was detected at a concentration above the DOH EALs, but below the SSRBL.

In 2011, quarterly groundwater samples were collected from wells RHWM01, RHWM02, RHMW03, and RHMW05, and sampling point RHMW2254-01. Samples were collected in January, April, July, and October. In a Fall 2011 update, the DOH EALs were revised. The drinking water toxicity EAL for TPH-d decreased from 210 to 190 µg/L (DOH, 2011). The COPCs with concentrations exceeding current DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EALs, but below the SSRBL.
- RHMW02 TPH-d, naphthalene, indeno[1,2,3-cd]pyrene, and 1-methylnaphthalene were
 detected at concentrations above their respective DOH EAL. The TPH-d concentrations
 were below the SSRBL.

In 2012, quarterly groundwater samples were collected from wells RHWM01, RHWM02, RHMW03, and RHMW05, and sampling point RHMW2254-01. Samples were collected in February, April, July, and November. The COPCs with concentrations exceeding current DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EALs, but below the SSRBL.
- RHMW02 TPH-d, TPH-g, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations above their respective DOH EAL. The TPH-d concentrations were below the SSRBL.

In 2013, quarterly groundwater samples were collected from wells RHWM01, RHWM02, RHMW03, and RHMW05, and sampling point RHMW2254-01. Samples were collected in January, April, July, and October. The COPCs with concentrations exceeding current DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EALs, but below the SSRBL.
- RHMW02 TPH-d, TPH-g, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations above their respective DOH EAL. The TPH-d concentrations were below the SSRBL.

In 2014, quarterly groundwater samples were collected from wells RHWM01, RHWM02, RHMW03, and RHMW05, and sampling point RHMW2254-01. Samples were collected in January, April, July, and October. The COPCs with concentrations exceeding current DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EALs, but below the SSRBL.
- RHMW02 TPH-d, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations above their respective DOH EAL. The TPH-d concentrations were below the SSRBL.

Between January and June 2014, additional groundwater sampling was conducted at wells RHMW01, RHMW02, RHMW05, and sampling point RHMW2254-01 in response to a reported

release from Tank 5. The COPCs with concentrations exceeding current DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EALs, but below the SSRBL.
- RHMW02 TPH-d, 1-methylnaphthalene, and naphthalene were detected at concentrations above their respective DOH EAL. The TPH-d concentrations were below the SSRBL.

1.3.1 Previous Reports

The following groundwater monitoring reports were previously submitted to the DOH:

- 1. Groundwater Sampling Report, First Quarter 2005 (submitted April 2005).
- Groundwater Sampling Report, Second Quarter 2005 (submitted August 2005).
- 3. Groundwater Sampling Report, Third Quarter 2005 (submitted November 2005).
- 4. Groundwater Sampling Report, Fourth Quarter 2005 (submitted February 2006).
- Groundwater Monitoring Results, July 2006 (submitted September 2006).
- 6. Groundwater Monitoring Results, December 2006 (submitted January 2007).
- 7. Groundwater Monitoring Results, March 2007 (submitted May 2007).
- 8. Groundwater Monitoring Results, June 2007 (submitted August 2007).
- 9. Groundwater Monitoring Results, September 2007 (submitted October 2007).
- 10. Groundwater Monitoring Report, January 2008 (submitted March 2008).
- 11. Groundwater Monitoring Report, April 2008 (submitted May 2008).
- 12. Groundwater Monitoring Report, July 2008 (submitted October 2008).
- 13. Groundwater Monitoring Report, October and December 2008 (submitted February 2009).
- 14. Groundwater Monitoring Report, February 2009 (submitted May 2009).
- 15. Groundwater Monitoring Report, May 2009 (submitted July 2009).
- 16. Groundwater Monitoring Report, July 2009 (submitted September 2009).
- 17. Groundwater Monitoring Report, October 2009 (submitted December 2009).
- 18. Groundwater Monitoring Report, January, February, and March 2010 (submitted April 2010).
- 19. Groundwater Monitoring Report, April 2010 (submitted May 2010).
- 20. Groundwater Monitoring Report, July 2010 (submitted August 2010).
- 21. Groundwater Monitoring Report, October 2010 (submitted December 2010).
- 22. Groundwater Monitoring Report, January 2011 (submitted March 2011).
- 23. Groundwater Monitoring Report, April 2011 (submitted June 2011).

- 24. Groundwater Monitoring Report, July 2011 (submitted September 2011).
- 25. Groundwater Monitoring Report, October 2011 (submitted December 2011).
- 26. Groundwater Monitoring Report, January-February 2012 (submitted March 2012).
- 27. Groundwater Monitoring Report, April 2012 (Submitted July 2012).
- 28. Groundwater Monitoring Report, October 2012 (Submitted January 2013).
- 29. Groundwater Monitoring Report, January 2013 (Submitted April 2013).
- 30. Groundwater Monitoring Report, April 2013 (Submitted July 2013).
- 31. Groundwater Monitoring Report, July 2013 (Submitted September 2013).
- 32. Groundwater Monitoring Report, October 2013 (Submitted January 2014).
- 33. Groundwater Sampling Report for Additional Sampling, January 2014 (submitted January 2014).
- 34. Groundwater Monitoring Report, January 2014 (Submitted April 2014).
- 35. Groundwater Sampling Report for Tank 5 Release Response on March 5 and 6, 2014 (submitted March 2014).
- 36. Groundwater Sampling Report for Tank 5 Release Response on March 10, 2014 (submitted March 2014).
- 37. Groundwater Sampling Report for Tank 5 Release Response on March 25 and 26, 2014 (submitted April 2014).
- 38. Groundwater Sampling Report for Tank 5 Release Response on April 7, 2014 (submitted April 2014).
- 39. Groundwater Monitoring Report, April 2014 (Submitted June 2014).
- 40. Groundwater Sampling Report for Tank 5 Release Response on May 27 and 28, 2014 (submitted June 2014).
- 41. Groundwater Sampling Report for Tank 5 Release Response on June 23 and 24, 2014 (submitted July 2014).
- 42. Groundwater Monitoring Report, July 2014 (Submitted September 2014).
- 43. Groundwater Monitoring Report, October 2014 (Submitted January 2015).

This Page Intentionally Left Blank.

SECTION 2 – GROUNDWATER SAMPLING

On January 27 and 28, 2015, ESI personnel collected groundwater samples from four monitoring wells at the RHSF (wells RHMW01, RHMW02, RHMW03, and RHMW05) and one sampling point at Red Hill Shaft (RHMW2254-01). The samples were collected in accordance with the 2012 WP/SAP. The WP/SAP is consistent with DOH UST release response requirements (DOH, 2000); DON Procedure I-C-3, *Monitoring Well Sampling* (DON, 2007); and the RHSF Final Groundwater Protection Plan (TEC, 2008). Prior to purging and sampling, the depth to groundwater and the depth to the bottoms of the wells were measured using a Geotech oil/water interface probe. No measurable product, sheen, or petroleum hydrocarbon odor was detected in any of the wells.

2.1 GROUNDWATER SAMPLING

Prior to collecting groundwater samples, the monitoring wells were purged of standing water in the well casings. Each well contains a dedicated bladder pump which was used to purge the well and to collect samples. To operate the pump, a portable air compressor with an in-line filter was connected to a QED MP50 MicroPurge® Basics Controller box, which was then connected to the pump. The compressor was turned on to power the pump and the controller was used to adjust the pumping rate to less than one liter of water per minute.

Water quality parameters were monitored on a periodic basis during well purging. The water quality parameters that were measured included hydrogen activity [pH], temperature, conductivity, dissolved oxygen, and oxidation reduction potential. The water quality parameters were evaluated to assess whether the natural characteristics of the aquifer formation water were present within the monitoring wells before collecting the samples. At least four readings were collected during the purging process. Purging was considered complete when at least three consecutive water quality measurements stabilized within approximately 10%. The readings were recorded on groundwater monitoring logs. The groundwater monitoring logs are included in Appendix A. In addition, field notes were taken to document the sampling event. The field notes are included in Appendix B.

When the water quality parameters stabilized, groundwater samples were collected from the wells using the bladder pumps. The groundwater samples were collected no more than two hours after purging was completed to decrease groundwater interaction with the monitoring well casing and atmosphere. Prior to collecting the sample, the water level in the monitoring wells was measured and recorded to ensure that excessive drawn down had not occurred. The groundwater samples were collected at flow rates of approximately 0.17 to 0.5 liters per minute. Samples collected for dissolved lead analysis were filtered in the field using new, 0.45-micron filters.

All samples were labeled and logged on the Sample Inventory Log, placed in Ziploc™ bags and sealed, custody sealed, sealed with tape, placed in a cooler with wet ice, and logged onto the Chain-of-Custody form. The samples were labeled and logged in accordance with DON

Procedure III-E, Record Keeping, Sample Labeling, and Chain-of-Custody Procedures (DON, 2007). All samples were shipped under Chain-of-Custody to the analytical laboratory and analyzed for the COPCs as described in Section 2.2.

2.2 ANALYTICAL RESULTS

The samples were analyzed for TPH-d using U.S. Environmental Protection Agency [EPA] Method 8015M, TPH-g and volatile organic compounds [VOCs] using EPA Method 8260B, PAHs using EPA Method 8270C SIM, dissolved lead using EPA Method 6020, and total lead using EPA Method 200.8. The sample collected from sampling point RHMW2254-01 was analyzed for total lead (unfiltered) as the sampling point is a drinking water supply infiltration shaft. A copy of the laboratory report is included as Appendix C.

Analytical results were compared to the DOH EALs for drinking water toxicity and gross contamination. Analytical results for wells RHMW01, RHMW02, RHMW03, and RHMW05 were also compared to the SSRBLs for TPH (4,500 μ g/L) and benzene (750 μ g/L), established in the RHSF Final Groundwater Protection Plan (TEC, 2008). The results of the first quarter groundwater sampling event are summarized in Table 2.1 and described below.

- RHMW01 TPH-d (33 μg/L) and lead (0.0631 μg/L) were the only analytes detected. The concentrations did not exceed the DOH EALs or the SSRBL.
- RHMW02 TPH-d (1,100 and 1,700 μg/L), TPH-g (54 and 59 μg/L), xylenes (0.35 μg/L in both primary and duplicate samples), acenaphthene (0.59 and 0.55 μg/L), ethylbenzene (0.16 and 0.17 μg/L), fluorene (0.30 and 0.22 μg/L), 1-methylnaphthalene (34 and 25 μg/L), 2-methylnaphthalene (7.6 and 2.7 μg/L), and naphthalene (90 and 63 μg/L) were detected in both the primary and duplicate samples collected. TPH-d, 1-methylnaphthalene, and naphthalene were detected at concentrations above their respective DOH EALs for both drinking water toxicity and gross contamination. However, the TPH-d concentrations did not exceed the SSRBL.
- RHMW03 TPH-d (39 μg/L) was the only analyte detected. The concentration did not exceed the DOH EALs or the SSRBL.
- RHMW05 None of the chemical constituents analyzed for were detected at a concentration at or above the LOD.
- RHMW2254-01 None of the chemical constituents analyzed for were detected at a concentration at or above the LOD.

2.3 GROUNDWATER CONTAMINANT TRENDS

The historical groundwater contaminant concentration trends for COPCs that exceeded the DOH EALs or SSRBLs are illustrated in Appendix D. A table of cumulative historical groundwater results is included as Appendix E. A summary of groundwater contaminant trends is provided below.

- RHMW01 COPCs detected during this round of quarterly sampling are consistent with the
 historical data for RHMW01. TPH-d has historically been detected at concentrations above
 the DOH EAL for both drinking water toxicity and gross contamination. TPH-d
 concentrations have shown an overall decreasing trend from a high of 1,500 μg/L in
 February 2005.
- RHMW02 COPCs detected during this round of quarterly sampling are consistent with the historical data for RHMW02. TPH-g, TPH-d, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene have historically been detected at concentrations above the DOH EALs. During the January 2015 event, concentrations of TPH-d, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene decreased from the previous event in October 2014, with the concentrations of 2-methylnaphthalene decreasing to levels below the DOH EALs. The concentrations of TPH-g remained below the DOH EALs for gross contamination and drinking water toxicity and were comparable to the concentrations detected during the previous event. Trichloroethylene was detected once in RHMW02 in September 2005 in the primary sample at a concentration above the DOH EAL for drinking water toxicity; however, trichloroethylene was not detected in the duplicate sample, and this may have been an anomalous result.
- RHMW03 COPCs detected during this round of quarterly sampling are consistent with the
 historical data for RHMW03. TPH-d has historically been detected at concentrations above
 the DOH EALs; however, it has not been detected at concentrations above the DOH EALs
 since October 2010.
- RHMW05 COPCs detected during this round of quarterly sampling are consistent with the
 historical data for RHMW05. TPH-d has historically been detected in RHMW05 at
 concentrations above the DOH EAL for both drinking water toxicity and gross contamination;
 however, it has not been detected at concentrations above the DOH EALs since January
 2010.
- RHMW2254-01 COPCs detected during this round of quarterly sampling are consistent
 with the historical data for RHMW2254-01. Although the method reporting limits for TPH-d
 exceeded one or both DOH EALs for drinking water toxicity and gross contamination
 between May 2009 and July 2010, TPH-d was last detected in RHMW2254-01 at a
 concentration above the DOH EAL for gross contamination in January 2008.

2.4 WASTE DISPOSAL

The purged groundwater and decontamination water generated during sampling of the inside tunnel were placed in a 55-gallon drum along with the purged water and decontamination water from the outside tunnel wells. The drum is currently stored onsite at ADIT 3 on top of a secondary containment spill pallet and covered by a tarp. There is a non-hazardous label affixed to the drum with all pertinent information relating to its generation. The drum is nearly full and is currently awaiting disposal.

This Page Intentionally Left Blank.

Contract No. N62742-12-D-1853 Contract Task Order 0002

TABLE 2.1

Analytical Results for Groundwater Sampling (January 27 and 28, 2015) Red Hill Bulk Fuel Storage Facility January 2015 Quarterly Monitoring Report

		DOH E	ALs		RHMW	/2254-01	(ES125)			RHW	M01 (ES1	20X)			RH	MW02 (ES	126)			RHW	/M03 (ES	123)			RH	MW05 (ES	5124)	
Method	Chemical	Drinking Water	Gross		1	1	i i	61	B			T ian	T 5.	B	1				B			Lon		B			Tion T	
		Toxicity	Contamination	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL
EPA 8015B	TPH-d	190	100	N.D.	U	25	12	11	33	HD	25	12	11	1,100	HD	25	10	2.9	39	HD	25	10	2.9	N.D.	U	26	13	12
EPA 8260B	TPH-g	100	100	N.D.	U	50	30	26	N.D.	U	50	30	26	54		50	30	26	N.D.	U	50	30	26	N.D.	U	50	30	26
I	Acenaphthene	370 240	20 2,000	N.D.	U	0.20	0.050	0.027	N.D.	U	0.22	0.054 0.054	0.029	0.59	 	0.20	0.050	0.027	N.D.	U	0.19 0.19	0.048	0.026	N.D.	U	0.19	0.048	0.026 0.043
	Acenaphthylene Anthracene	1,800	2,000	N.D.	l ü	0.20	0.050	0.044	N.D. N.D.	U	0.22	0.054	0.048	N.D. N.D.	U	0.20 0.20	0.050	0.044	N.D. N.D.	U	0.19	0.048	0.043	N.D. N.D.	U	0.19	0.048	0.043
	Benzo[a]anthracene	0.092	4.7	N.D.	l ü	0.20	0.050	0.023	N.D.	U	0.22	0.054	0.035	N.D.	Ü	0.20	0.050	0.032	N.D.	Ü	0.19	0.048	0.032	N.D.	Ü	0.19	0.048	0.020
ı	Benzo[g,h,i]perylene	1,500	0.13	N.D.	l ū	0.20	0.10	0.082	N.D.	Ū	0.22	0.11	0.089	N.D.	Ū	0.20	0.099	0.081	N.D.	Ü	0.19	0.097	0.079	N.D.	Ü	0.19	0.096	0.079
	Benzo[a]pyrene	0.2	0.81	N.D.	U	0.20	0.050	0.022	N.D.	U	0.22	0.054	0.024	N.D.	U	0.20	0.050	0.022	N.D.	U	0.19	0.048	0.022	N.D.	U	0.19	0.048	0.021
	Benzo[b]fluoranthene	0.092	0.75	N.D.	U	0.20	0.050	0.018	N.D.	U	0.22	0.054	0.019	N.D.	U	0.20	0.050	0.017	N.D.	U	0.19	0.048	0.017	N.D.	U	0.19	0.048	0.017
	Benzo[k]fluoranthene	0.92	0.4	N.D.	U	0.20	0.050	0.031	N.D.	U	0.22	0.054	0.034	N.D.	U	0.20	0.050	0.031	N.D.	U	0.19	0.048	0.030	N.D.	U	0.19	0.048	0.030
EPA 8270C	Chrysene	9.2	1 2.50	N.D.	U	0.20	0.050	0.025	N.D.	U	0.22	0.054	0.027	N.D.	U	0.20	0.050	0.025	N.D.	U	0.19	0.048	0.024	N.D.	U	0.19	0.048	0.024
	Dibenzo[a,h]anthracene ¹ Fluoranthene	0.0092	0.52 130	N.D.	U	0.20	0.050	0.047 0.047	N.D. N.D.	U	0.22	0.054	0.052	N.D. N.D.	U	0.20 0.20	0.050 0.050	0.047	N.D.	U	0.19 0.19	0.048	0.046 0.045	N.D. N.D.	U	0.19	0.048	0.046 0.045
	Fluorene	240	950	N.D.	U	0.20	0.050	0.047	N.D.	U	0.22	0.054	0.031	0.30	-	0.20	0.050	0.046	N.D.	Ü	0.19	0.048	0.043	N.D.	U	0.19	0.048	0.045
	Indeno[1,2,3-cd]pyrene	0.092	0.095	N.D.	l ü	0.20	0.050	0.021	N.D.	- Ü	0.22	0.054	0.023	N.D.	U	0.20	0.050	0.021	N.D.	Ü	0.19	0.048	0.020	N.D.	Ü	0.19	0.048	0.020
	1-Methylnaphthalene	4.7	10	N.D.	l ū	0.20	0.10	0.051	N.D.	Ū	0.22	0.11	0.056	34	1	2.0	0.99	0.51	N.D.	Ü	0.19	0.097	0.050	N.D.	Ū	0.19	0.096	0.050
	2-Methylnaphthalene	24	10	N.D.	U	0.20	0.050	0.046	N.D.	U	0.22	0.054	0.050	7.6	J	0.20	0.050	0.046	N.D.	U	0.19	0.048	0.045	N.D.	U	0.19	0.048	0.045
	Naphthalene	17	21	N.D.	U	0.20	0.050	0.034	N.D.	U	0.22	0.054	0.037	90		2.0	0.50	0.34	N.D.	U	0.19	0.048	0.033	N.D.	U	0.19	0.048	0.033
8	Phenanthrene	240	410	N.D.	U	0.20	0.050	0.027	N.D.	U	0.22	0.054	0.029	N.D.	U	0.20	0.050	0.027	N.D.	U	0.19	0.048	0.026	N.D.	U	0.19	0.048	0.026
	Pyrene	180	68	N.D.	U	0.20	0.050	0.020	N.D.	U	0.22	0.054	0.022	N.D.	U	0.20	0.050	0.020	N.D.	U	0.19	0.048	0.020	N.D.	U	0.19	0.048	0.020
	1,1,2-Tetrachloroethane	0.52	50,000	N.D.	U	1 1	0.5	0.4	N.D.	U	1	0.5	0.4	N.D.	U	1	0.5	0.4	N.D.	U	1	0.5	0.4	N.D.	U	1	0.5	0.4
8	1,1,2,2-Tetrachloroethane ¹ 1,1,1-Trichloroethane	0.067	500 970	N.D.	U	1 5	0.5	0.41	N.D. N.D.	U	5	0.5	0.41	N.D.	U	1 5	0.5 0.5	0.41	N.D.	U	5	0.5	0.41	N.D. N.D.	U	1 5	0.5	0.41
	1,1,2-Trichloroethane	5	50,000	N.D.	 	1 1	0.5	0.38	N.D.	U	1	0.5	0.38	N.D.	U	1	0.5	0.38	N.D.	U	1	0.5	0.38	N.D.	U	1	0.5	
ı	1,1-Dichloroethane	2.4	50,000	N.D.	Ιυ	5	0.5	0.28	N.D.	Ü	5	0.5	0.28	N.D.	Ü	5	0.5	0.28	N.D.	Ü	5	0.5	0.28	N.D.	Ü	5	0.5	
	1,1-Dichloroethylene	7	1,500	N.D.	Ū	1	0.5	0.43	N.D.	Ü	1	0.5	0.43	N.D.	Ū	1	0.5	0.43	N.D.	Ū	1	0.5	0.43	N.D.	Ü	1	0.5	0.43
ı	1,2,3-Trichloropropane ¹	0.6	50,000	N.D.	U	5	1	0.64	N.D.	U	5	1	0.64	N.D.	U	5	1	0.64	N.D.	U	5	1	0.64	N.D.	U	5	1	0.64
	1,2,4-Trichlorobenzene	70	3,000	N.D.	U	5	1	0.5	N.D.	U	5	1	0.5	N.D.	U	5	1	0.5	N.D.	U	5	1	0.5	N.D.	U	5	1	0.5
ı	1,2-Dibromo-3- chloropropane	0.04	10	N.D.	U	10	2	1.2	N.D.	U	10	2	1.2	N.D.	U	10	2	1.2	N.D.	U	10	2	1.2	N.D.	U	10	2	0.64 0.5 1.2 0.24 0.46 0.24 0.42 0.4 0.25 0.43 6 0.14
	1,2-Dibromoethane	0.04	50,000	N.D.	U	1 1	0.5	0.24	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	
	1,2-Dichlorobenzene 1,2-Dichloroethane	600 0.15	7,000	N.D.	U	1 1	0.5	0.46 0.24	N.D. N.D.	U	1	0.5	0.46	N.D.	U	1	0.5 0.5	0.46	N.D.	U	1	0.5	0.46 0.24	N.D. N.D.	U	1	0.5	0.28 0.43 0.64 0.5 1.2 0.24 0.46 0.24 0.42 0.4 0.25 0.43 6
	1,2-Dichloropropane	5	10	N.D.	 	5	0.5	0.42	N.D.	U	5	0.5	0.42	N.D.	U	5	0.5	0.42	N.D.	Ü	5	0.5	0.42	N.D.	U	5	0.5	
	1,3-Dichlorobenzene	180	5	N.D.	Ιυ	1 1	0.5	0.4	N.D.	Ū	1	0.5	0.4	N.D.	Ū	1	0.5	0.4	N.D.	Ü	1	0.5	0.4	N.D.	Ū	1	0.5	
ı	1,3-Dichloropropene (total of	0.43	50,000	N.D.	u	1	0.5	0.25	N.D.	U	1	0.5	0.25	N.D.	U	1	0.5	0.25	N.D.	U	1	0.5	0.25	N.D.	U	1	0.5	
	cis/trans) 1					<u> </u>					'	ļ				'			ļ		'	_					ļ	
ı	1,4-Dichlorobenzene	75	5	N.D.	U	1	0.5	0.43	N.D.	U	1	0.5	0.43	N.D.	U	1	0.5	0.43	N.D.	U	1	0.5	0.43	N.D.	U	1	0.5	<u>-</u>
	Acetone	22,000	20,000	N.D.	<u> </u>	20	10	6	N.D.	U	20	10	6	N.D.	U,IJ	20	10	6	N.D.	U,IJ	20	10	6	N.D.	U	20	10	
ı	Benzene Bromodichloromethane ¹	0.12	170 50,000	N.D.	U	5	0.5	0.14 0.21	N.D.	U	1 5	0.5	0.14	N.D.	U	1 5	0.5	0.14	N.D.	U	5	0.5	0.14 0.21	N.D.	U	1 5	0.5	
	Bromoform	80	510	N.D.	Ü	10	1	0.21	N.D.	U	10	1	0.21	N.D.	Ü	10	1	0.21	N.D.	Ü	10	1	0.21	N.D.	U	10	1	0.21
EPA 8260B	Bromomethane	8.7	50,000	N.D.	U.IH	20	5	3.9	N.D.	U,IH	20	5	3.9	N.D.	U,IH	20	5	3.9	N.D.	U,IH	20	5	3.9	N.D.	U.IH	20	5	3.9
EPA 0200B	Carbon Tetrachloride	5	520	N.D.	Ú	1	0.5	0.23	N.D.	Ú	1	0.5	0.23	N.D.	Ú	1	0.5	0.23	N.D.	Ú	1	0.5	0.23	N.D.	Ú	1	0.5	0.23
I	Chlorobenzene	100	50	N.D.	U	5	0.5	0.17	N.D.	U	5	0.5	0.17	N.D.	U	5	0.5	0.17	N.D.	U	5	0.5	0.17	N.D.	U	5	0.5	0.17
	Chloroethane	21,000	16	N.D.	U	10	5	2.3	N.D.	U	10	5	2.3	N.D.	U	10	5	2.3	N.D.	U	10	5	2.3	N.D.	U	10	5	2.3
	Chloroform	70	2,400	N.D.	U U	5	0.5	0.46	N.D.	U	5	0.5	0.46	N.D.	U	5	0.5	0.46	N.D.	U	5	0.5	0.46	N.D.	U	5	0.5	0.46
	Chloromethane'	1.8	50,000 50,000	N.D.	U	10	0.5	1.8	N.D.	U	10	2	1.8	N.D.	U	10	2	0.48	N.D.	U	10	2	1.8	N.D.	U	10	2	1.8 0.48
I	Dibromochloromethane	0.16	50,000	N.D.	U	1 1	0.5	0.48 0.25	N.D. N.D.	U	1	0.5	0.48	N.D.	U	1	0.5 0.5	0.48	N.D. N.D.	U	1	0.5	0.48 0.25	N.D. N.D.	U	1	0.5	0.48
	Ethylbenzene	700	30	N.D.	l ü	1 1	0.5	0.14	N.D.	U	1	0.5	0.14	0.16	J	1	0.5	0.14	N.D.	U	1	0.5	0.14	N.D.	U	1	0.5	0.14
I	Hexachlorobutadiene	0.86	6	N.D.	Ū	1	0.5	0.32	N.D.	Ü	1	0.5	0.32	N.D.	Ū	1	0.5	0.32	N.D.	Ū	1	0.5	0.32	N.D.	Ū	1	0.5	0.32
¥	Methyl ethyl ketone (2-	7,100	8,400	N.D.	U	10	5.0	2.2	N.D.	IJ	10	5.0	2.2	N.D.	U	10	5.0	2.2	N.D.	U	10	5.0	2.2	N.D.	U	10	5.0	2.2
	Butanone)	7,100	0,400	14.0.	ļ	10	3.0	2.2	14.0.	0	10	3.0	2.2	IV.D.		10	3.0	2.2	14.0.		10	3.0	2.2	14.0.	0	10	3.0	
I	Methyl isobutyl ketone (4- Methyl-2-Pentanone)	2,000	1300	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4
	Methyl tert-butyl Ether	12	5	N.D.	U	1	0.5	0.31	N.D.	U	1	0.5	0.31	N.D.	U	1	0.5	0.31	N.D.	U	1	0.5	0.31	N.D.	U	1	0.5	0.31
I	Methylene chloride	4.8	9,100	N.D.	Ū	5	1.0	0.64	N.D.	U	5	1.0	0.64	N.D.	Ū	5	1.0	0.64	N.D.	U	5	1.0	0.64	N.D.	Ü	5	1.0	0.64
I	Styrene	100	10	N.D.	U	1	0.5	0.17	N.D.	U	1	0.5	0.17	N.D.	U	1	0.5	0.17	N.D.	U	1	0.5	0.17	N.D.	U	1	0.5	0.17
	Tetrachloroethylene	5	170	N.D.	U	5	0.5	0.39	N.D.	U	5	0.5	0.39	N.D.	U	5	0.5	0.39	N.D.	U	5	0.5	0.39	N.D.	U	5	0.5	0.39
	Toluene	1,000	40	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24
1	trans-1,2- Dichloroethylene	100	260	N.D.	U	1 1	0.5	0.37	N.D.	U	1	0.5	0.37	N.D.	U	1	0.5	0.37	N.D.	U	1	0.5	0.37	N.D.	U	11	0.5	0.37
	Trichloroethylene	5	310	N.D.	U	1 1	0.5	0.37	N.D.	U	1	0.5	0.37	N.D.	U	1	0.5	0.37	N.D.	U	1	0.5	0.37	N.D.	U	1	0.5	0.37
	Vinyl chloride Xylenes	10,000	3,400	N.D.	U	1 11	0.5 1.5	0.3 0.23	N.D. N.D.	U	1	0.5	0.3	N.D. 0.35	J	1	0.5 0.5	0.3	N.D. N.D.	U	1	0.5	0.3	N.D. N.D.	U	1 11	0.5 1.5	0.3 0.23
EPA 6020	Dissolved Lead	15	50,000	IN.D.	-	- ''	1.3	- 0.23	0.631	<u> </u>	1	0.3	0.0898	N.D.	U	1	0.3	0.23	N.D.	U	1	0.3	0.23	N.D.	U	0.5		0.0898
EPA 200.8	Total Lead	15	50,000	N.D.	Ū	1.0	-	0.0898		-	-		- 0.0030	- 14.0.	-	-	-	-	- 11.0.	-	-	- 0.2	-	- 14.0.	-	-		-
Barrara and a second	crograms per liter (ug/l) Shaded)	งเน้าของเหตอองแบบของเหตออ				***************************************			lana de la constantia del constantia de la constantia de la constantia della constantia de	************	***************************************	***************************************	***************************************	***************************************				***************************************										

The data are in micrograms per liter (μ g/L). Shaded values exceeded the DOH EALs. LOD for this analyte exceeds the DOH EAL Not Analyzed

DL DOH EALS EPA HD ICH ICJ

Not Analyzed
This sample was analyzed by EPA Method 200.8 and therefore does not have an LOD
Detection Limit or Method Detection Limit (MDL)
DOH Tier 1 Environmental Action Levels for groundwater where groundwater is a current drinking water source and surface water is greater than 150 meters from the site (DOH, Fall 2011).
Environmental Protection Agency
The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
Initial calibration verification recovery is above the control limit for this analyte.
Initial calibration verification recovery is below the control limit for this analyte.

2-5

Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated. Analyte was detected at a concentration below the LOQ a Limit of Detection Limit of Quantitation Not Detected Qualifiers Total Petroleum Hydrocarbons as diesel Total Petroleum Hydrocarbons as gasoline Undetected at DL and is reported as less than the LOD.

J LOD LOQ N.D. Q TPH-d TPH-g U

Red Hill LTM, 1Q2015 Status Report Inside Tunnel Wells

Contract No. N62742-12-D-1853

This Page Intentionally Left Blank.

SECTION 3 – DATA QUALITY ASSESSMENT

A data quality assessment, which consists of a review of the overall groundwater sample collection and analysis process, was performed in order to determine whether the analytical data generated met the quality objectives for the project. The data quality assessment was performed in accordance with the approved WP/SAP (ESI, 2012). The field quality control program consisted of standardized sample collection and management procedures, and the collection of field duplicate samples, matrix spike samples, and trip blank samples. The laboratory quality assurance program consisted of the use of standard analytical methods and the preparation and analyses of Matrix Spike [MS]/Matrix Spike Duplicate [MSD] samples, surrogate spikes, blanks, and Laboratory Control Samples [LCSs]/Laboratory Control Sample Duplicates [LCSDs].

3.1 DATA VALIDATION AND ASSESSMENT

The objective of data validation is to provide data of known quality for project decisions. Data quality is judged in terms of Precision, Accuracy, Representativeness, Completeness, Comparability, and Sensitivity [PARCCS]. A number of factors may affect the quality of data, including: sample collection methods, sample analysis methods, and adherence to established procedures for sample collection, preservation, management, shipment, and analysis.

Precision

Precision is defined as the reproducibility of replicate measurements. Precision is evaluated by Relative Percentage Difference [RPD] of field duplicates, LCS/LCSD, and MS/MSD results. Field duplicate and MS/MSD samples were collected at a rate of approximately 10% of primary samples. Field duplicates were sent to the laboratory along with the primary samples.

The RPDs of detected analytes for the primary and field duplicate samples (ES126 and ES127) are provided in Table 3.1. A precision of less than 50% for duplicate pairs is required by the DON Project Procedures Manual to be considered acceptable (DON, 2007). All duplicate RPDs were below the acceptable maximum, except for 2-methylnaphthalene (95%). Both "J" to indicate a lack of precision. 2-methylnaphthalene results were flagged 2-Methylnaphthalene results for both samples were below the DOH EALs but have been detected at concentrations above DOH EALs during previous events. Judged solely by the magnitude of the imprecision associated with the samples it is unlikely that the actual concentration of 2-methylnaphthalene in the RHMW02 samples collected during the first quarter 2015 event exceeded the EALs (gross contamination:10 µg/l; or drinking water toxicity: 24 µg/l). However, the imprecision is evaluated in the context of additional errors that may have a negative impact on data quality and the ability to use the data for decision making. The potential low bias in the data described in the accuracy section below is one of these additional errors. 2-Methylnaphthalene was not detected in any other sample analyzed in the course of the January 2015 sampling event; and because the LOQs associated with these results (nondetections) were sufficiently low, the negative impact of the lack of precision on data usability (for non-detections) was negligible.

Similarly, the RPD for 1,1,2,2-tetrachloroethane in the MS/MSD was out of control indicating a negative impact on precision due to matrix effects. Although 1,1,2,2-tetrachloroethane was not detected in any samples, the LOQs and LODs for this analyte already exceed the EAL (for drinking water toxicity). Thus, the additional error may have a negative impact on the ability to identify potential contamination with this analyte at concentrations close to the LODs. However, the analyte was not detected previously in any of the samples at levels above the detection limit. When the datum is considered in the context of all previous data obtained in the course of the LTM project, the additional impact on project decision making due to the lack of precision in the current datum is insignificant. RPDs for MS/MSD and LCS/LCSD pairs for all other analytes were within the control limits, and the data precision is considered acceptable.

Accuracy

Accuracy is defined as the degree of conformity of a measurement to a standard or true value. Accuracy is evaluated through measurement of the percent recovery of an analyte in a reference standard or spiked sample. Accuracy limits for surrogates, laboratory control spike, MS, and MSD samples are either prescribed by the Department of Defense [DoD] or established by the individual laboratory. The acceptance criteria for accuracy are dependent on the analytical method and are based on historical laboratory or DoD data.

Between July 2006 and July 2010, naphthalene was analyzed by both EPA Methods 8260B and 8270C, and both results were reported. In September 2005 and in all data beginning in October 2010, only results using EPA Method 8270C were reported. Naphthalene has historically only been detected at concentrations above the DOH EALs in well RHMW02. In this well, concentrations of naphthalene detected in each sample by EPA Method 8260B were generally two to three times higher than those detected by EPA Method 8270C. We assume this is due to the better preservation of VOCs associated with the use of EPA Method 8260B. This suggests that the naphthalene results provided by EPA Method 8270C may be biased low. Since March 2014, naphthalene concentrations in RHMW02 have exceeded DOH EALs for both gross contamination and drinking water toxicity. Therefore, a low bias is unlikely to affect project decisions.

Results for TPH-d in samples ES120X, ES123, ES126, and ES127 were flagged "HD." The laboratory indicated a mismatch between the calibration standard and the TPH-d chromatographic profile. Mismatches of this type are not uncommon. Even though chromatograms are not part of the standard laboratory package, ESI was able to review the chromatograms from RHMW02 dating back to October 2012. The chromatograms of groundwater samples from RHMW02 did not significantly differ between each event, and did not match a standard chromatogram of JP-8 in water.

The MS and MSD recoveries were above the control limits for acetone and trichloroethene and the associated sample results may be biased high; however, neither of these analytes were detected in any samples. The MS and MSD recoveries were below the control limits for 1,1,2,2-tetrachloroethane, 1,2,3-trichloropropane, naphthalene, 1-methylnaphthalene, and

2-methylnaphthalene. 1,1,2,2-Tetrachloroethane and 1,2,3-trichloropropane have not historically been detected in the wells. However, the LOQs and LODs of both compounds exceed the EALs (for drinking water toxicity), with additional issues of low precision for 1,1,2,2-tetrachloroethane data thus potentially increasing the range (between EAL and LOQs) of concentrations at which the compounds may be present in samples at a concentration above the EALs but not detected. Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene concentrations for ES126, the primary sample on which the MS/MSD were performed, were significantly higher than the added spike concentration, which prevented an accurate evaluation of the MS/MSD recovery for these analytes.

An air bubble was present in one of the VOA containers for sample ES124. However, this VOA container was not used in sample analysis, and this does not affect data usability.

The surrogate spike recovery for nitrobenzene-d5 in samples ES126 and ES127 was below the control limits (0%) for naphthalene and 1-methylnaphthalene results. This is likely a result of the sample dilution, since nitrobenzene-d5 was in control for the PAH results from undiluted sample runs. However, surrogate recoveries for PAH results were generally low (mostly <70%), indicating that a slight low bias may be associated with the data. All other MS/MSD, LCS/LCSD, and surrogate spike recoveries were within acceptable recovery limits; therefore, the data accuracy for this monitoring event is considered acceptable with the exceptions noted above.

Representativeness

Representativeness is the degree that data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness was achieved by conducting sampling in accordance with the sample collection procedures described in the project WP/SAP, including standardized sample collection methods (ESI, 2012).

Representativeness is also evaluated through the compliance with the standardized sample holding time and sample preservation methods, and through the analysis of blank samples, including method blank and trip blank samples. For this sampling event, all sample holding times and sample preservation were consistent with EPA guidance.

For this sampling event, one trip blank was included in every cooler containing samples for VOC and TPH-g analysis to assess the potential for contamination during sample transport. Two trip blanks were collected. No analytes were detected in either trip blank. Based on the assessment of representativeness, the groundwater sample data are considered representative of the groundwater quality on site. The trip blank results are provided in Table 3.1.

Completeness

Completeness is defined as the overall percentage of valid analytical results (including estimated results) compared to the total number of analytical results reported by the analytical

laboratory. No data were rejected for this project, and therefore the completeness goal for this project (90%), was successfully met.

Comparability

Comparability expresses the confidence with which one data set can be compared to another data set. Comparability can be related to accuracy and precision because these quantities are measures of data reliability. Data with acceptable precision and accuracy are considered comparable if collection techniques, analytical procedures, methods and reporting are equivalent.

As noted above, between July 2006 and July 2010, naphthalene was analyzed for using both EPA Methods 8260B and 8270C, and in September 2005 and between October 2010 and the most recent event, only results using EPA Method 8270C were reported. In general, EPA Method 8260B resulted in higher, and as discussed above, likely more accurate, results than EPA Method 8270C. However, for the sake of comparability with results from recent events, EPA Method 8270C was used for naphthalene analysis in this event. Consequently, the low bias associated with Method 8270C should be considered when making project decisions.

All project samples for TPH-g analysis through July 2010 were analyzed by EPA Method 8015; beginning in October 2010, EPA Method 8260B was used. There was no event where both methods were used; consequently, there is no way to directly compare the results obtained by method and to assess potential bias. However, there is no reason to believe that using either method should bias the data, and the TPH-g data for all events should be comparable.

Other than the naphthalene bias discussed above, no issues with comparability were identified. The results are considered comparable within this data set and with the data collected from recent sampling events.

Sensitivity

The limits of quantitation [LOQs] are established by the laboratory based on the LODs or instrument detection limits, historical data, and EPA limits established for the various methods. The LOQs for samples may require adjustment by the laboratory due to matrix interference or if high levels of target analytes necessitate dilution before analysis. Matrix interference and sample dilutions have the effect of decreasing sensitivity and increasing the LOQs. Laboratory LODs and LOQs for several analytes (EPA Methods 8260 and 8270) for this event differed from the LODs and LOQs in the WP/SAP because the laboratory updates them quarterly and in some cases, dilution was necessary due to the presence of high concentrations of analytes.

For this event, LODs and LOQs for several analytes were greater than the DOH EALs (as stated in the WP/SAP), negatively impacting the ability to detect analytes at concentrations greater than the DOH EALs but below the LODs. The lack of the required sensitivity should be considered when making project decisions. The affected analytes for this monitoring event are 1,2,3-trichloropropane, 1,2-dibromo-3-chloropropane, 1,2-dibromoethane,

1,3-dichloropropene, bromodichloromethane, chloromethane, dibromochloromethane, 1,1,2,2-tetrachloroethane, and dibenzo[a,h]anthracene. Additional uncertainty associated with the data may reduce the capability of detecting these compounds at concentrations between the LODs and the EALs even further. Issues with accuracy and precision for these data that may have contributed to decreased sensitivity are discussed in their respective sections.

3.2 DATA ASSESSMENT AND USABILITY CONCLUSIONS

The PARCCS criteria were evaluated, and with a few exceptions, all criteria were met. Based on the high RPD of 2-methlynaphthelene results in duplicate samples ES126 and ES127, it is possible that there may be lower precision in the 2-methylnaphthalene results. This decreased precision should be kept in mind when comparing 2-methylnaphthalene results from this sampling event to those of previous events. During this event, Well RHMW02 is the only well where 2-methylnaphthalene was detected at concentrations near the DOH EAL. Because concentrations of 1-methylnaphthalene and naphthalene were detected at concentrations above DOH EALs during this event, the lower precision of 2-methylnaphthalene results should not significantly affect project decisions.

The surrogate spike recovery for nitrobenzene-d5 was below the control limits for naphthalene and 1-methylnaphthalene results, and the surrogate recoveries for other PAH results were generally low (mostly <70%), indicating that a slight low bias may be associated with the PAH data. However, all PAHs except 2-methylnaphthalene (discussed above) were either not detected, detected at concentrations well below DOH EALs, or detected at concentrations above DOH EALs. Since no PAHs were detected at concentrations slightly below DOH EALs, it is unlikely that a slight low bias would have an impact on project decisions.

Additionally, LODs and LOQs for several analytes were greater than the DOH EALs. These analytes have not historically been detected in any of the wells, and with the exception of 1,2-dichloroethane, are not likely to be related to a fuel release. Therefore, the lack of required sensitivity should not have a significant impact on project decisions.

Other than these issues, the data assessment concludes that all data generated during this event are usable for the intended purpose.

This Page Intentionally Left Blank

Contract No. N62742-12-D-1853 Contract Task Order 0002

TABLE 3.1 Quality Control Results for Groundwater Sampling (January 27 and 28, 2015) Red Hill Bulk Fuel Storage Facility January 2015 Quarterly Monitoring Report

								1 y ZU 13	Quarteri														~ ~ ~	
		DOH	DOH EALs RHMW02 (ES126) RHMW02 (ES127) (DUP)														rip (1/27/	2015)	ES Trip (1/28/2015)					
Method	Chemical Constituent													RPD Duplicate										
memoa j	Official Constituent	Drinking Water Toxicity	Gross Contamination	n Result	Q	LOQ	LOD	DL	Result	Q	LOQ	LOD	DL	(%)	Result	Q	LOQ	LOD	DL	Result	Q	LOQ	LOD	DL
1														(79)										
EPA 8015B	TPH-d	190	100	1,100	HD	25	10	2.9	1,700	HD	25	10	2.9	42.86	-	-	-	-	-	-	-	-	-	-
EPA 8260B	TPH-g	100	100	54		50	30	26	59		50	30	26	8.85	N.D.	U	50	30	26	N.D.	U	50	30	26
	Acenaphthene	370	20	0.59		0.20	0.050	0.027	0.55		0.20	0.049	0.026	7.02	-	-	-	-	-	-	-	-	-	
ſ	Acenaphthylene	240	2,000	N.D.	U	0.20	0.050	0.044	N.D.	U	0.20	0.049	0.044	NA	-	-	-	-	-	-	-	-	-	-
1	Anthracene	1,800	22	N.D.	U	0.20	0.050	0.029	N.D.	U	0.20	0.049	0.028	NA	-	<u> </u>	-		-	-		-	<u> </u>	<u> </u>
1	Benzo[a]anthracene	0.092	4.7	N.D.	U	0.20	0.050	0.032	N.D.	U	0.20	0.049	0.032	NA NA	-	-	-	-	ļ	-		-	-	<u> </u>
!	Benzo[g,h,i]perylene	1,500	0.13	N.D.	U	0.20	0.099	0.081	N.D.	U	0.20	0.098	0.080	NA NA	-	 	-	 -	 -	 		 -		
!	Benzo[a]pyrene	0.2	0.81 0.75	N.D.	U	0.20	0.050	0.022	N.D.	U	0.20	0.049	0.022	NA NA	-	 -		+ -	-	-	 -	 		
1	Benzo[b]fluoranthene Benzo[k]fluoranthene	0.092 0.92	0.75	N.D.	U	0.20	0.050	0.017	N.D.	U	0.20	0.049	0.017	NA NA	-	 	-	-	-	-		-	+	 -
	Chrysene	9.2	0.4	N.D.	 	0.20	0.050	0.031	N.D.	Ηü	0.20	0.049	0.030	NA NA	<u> </u>	+	-	 -	 	-		 -	 	
EPA 8270C	Dibenzo[a,h]anthracene	0.0092	0.52	N.D.	T ü	0.20	0.050	0.047	N.D.	Ι ΰ	0.20	0.049	0.024	NA NA		 		+ - -	 	 		+	+	
1	Fluoranthene	1,500	130	N.D.	l ü	0.20	0.050	0.046	N.D.	l ü	0.20	0.049	0.046	NA NA	-	 - -		+	 	-	 		+ -	
1	Fluorene	240	950	0.30	†	0.20	0.050	0.042	0.22	 	0.20	0.049	0.042	30.77	_	-	-	 -	 -	 	-	-	-	
1	Indeno[1,2,3-cd]pyrene	0.092	0.095	N.D.	U	0.20	0.050	0.021	N.D.	U	0.20	0.049	0.021	NA	-	 -	-	-	-	-	-	-	-	<u> </u>
1	1-Methylnaphthalene	4.7	10	34		2.0	0.99	0.51	25		2.0	0.98	0.51	30.51	-	-	-	-	-	-	-	-	-	-
Ì	2-Methylnaphthalene	24	10	7.6	J	0.20	0.050	0.046	2.7	J	0.20	0.049	0.046	95.15	-	-	-	-	-	-		-		
ı	Naphthalene	17	21	90		2.0	0.50	0.34	63		2.0	0.49	0.33	35.29	-	-	-	-	-	-	-	-	-	-
ı	Phenanthrene	240	410	N.D.	U	0.20	0.050	0.027	N.D.	U	0.20	0.049	0.027	NA	-	-	-	-	-	-		-	-	
	Pyrene	180	68	N.D.	U	0.20	0.050	0.020	N.D.	U	0.20	0.049	0.020	NA	-	-	-			-	<u> </u>	-	-	<u> </u>
	1,1,1,2-Tetrachloroethane	0.52	50,000	N.D.	U	1	0.5	0.4	N.D.	U	1	0.5	0.4	NA	N.D.	U	1	0.5	0.4	N.D.	U	11	0.5	0.4
1	1,1,2,2-Tetrachloroethane	0.067	500	N.D.	U	1 1	0.5	0.41	N.D.	U	1 1	0.5	0.41	NA NA	N.D.	U.	1	0.5	0.41	N.D.	U U	1 1	0.5	0.41
1	1,1,1-Trichloroethane	200	970	N.D.	U	5	0.5	0.3	N.D.	U	5	0.5	0.3	NA NA	N.D.	U	5 1	0.5	0.3	N.D.	U	1 5	0.5	0.3
!	1,1,2-Trichloroethane 1,1-Dichloroethane	5 2.4	50,000 50,000	N.D.	U	5	0.5	0.38	N.D.	U	5	0.5	0.38	NA NA	N.D.	U	5	0.5	0.38	N.D. N.D.	U	5	0.5	0.38
1	1,1-Dichloroethylene	7	1,500	N.D.	1 0	1	0.5	0.43	N.D.	l ü	1 1	0.5	0.28	NA NA	N.D.	1 0	1	0.5	0.43	N.D.	 	1	0.5	0.43
1	1,2,3-Trichloropropane	0.6	50,000	N.D.	Ü	5	1	0.64	N.D.	l ü	5	1	0.43	NA NA	N.D.	T Ü	5	1	0.64	N.D.	l ü	5	1 1	0.43
1	1,2,4-Trichlorobenzene	70	3,000	N.D.	Ü	5	1 1	0.5	N.D.	Ü	5	 	0.5	NA	N.D.	l ŭ	5	 	0.5	N.D.	T U	5	1 1	0.5
1	1,2-Dibromo-3- chloropropane	0.04	10	N.D.	Ū	10	2	1.2	N.D.	Ū	10	2	1.2	NA	N.D.	Ū	10	2	1.2	N.D.	Ū	10	2	1.2
1	1,2-Dibromoethane	0.04	50,000	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24	NA	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24
1	1,2-Dichlorobenzene	600	10	N.D.	U	1	0.5	0.46	N.D.	U	1	0.5	0.46	NA	N.D.	U	1	0.5	0.46	N.D.	U	1	0.5	0.46
ı	1,2-Dichloroethane	0.15	7,000	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24	NA	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24
	1,2-Dichloropropane	5	10	N.D.	U	5	0.5	0.42	N.D.	U	5	0.5	0.42	NA	N.D.	U	5	0.5	0.42	N.D.	U	5	0.5	0.42
	1,3-Dichlorobenzene	180	5	N.D.	U	1	0.5	0.4	N.D.	U	1	0.5	0.4	NA	N.D.	U	1	0.5	0.4	N.D.	U	1	0.5	0.4
	1,3-Dichloropropene (total of cis/trans)	0.43	50,000	N.D.	U	1	0.5	0.25	N.D.	U	1	0.5	0.25	NA	N.D.	U	1	0.5	0.25	N.D.	U	1	0.5	0.25
	1,4-Dichlorobenzene	75	5	N.D.	U	1	0.5	0.43	N.D.	U	1	0.5	0.43	NA NA	N.D.	U	1	0.5	0.43	N.D.	U	1	0.5	0.43
!	Acetone	22,000	20,000	N.D.	U,IJ	20	10	6	N.D.	U,IJ	20	10	6	NA NA	N.D.	U	20	10	6	N.D.	U,IJ	20	10	6
!	Benzene Bromodishloromethane	5 0.12	170 50,000	N.D.	U	5	0.5	0.14	N.D.	U	5	0.5	0.14	NA NA	N.D.	U	1 5	0.5	0.14	N.D.	U U	5	0.5	0.14
1	Bromodichloromethane Bromoform	80	50,000	N.D.	 0	10	0.5	0.21	N.D.	U	10	1	0.21	NA NA	N.D. N.D.	U	10	0.5	0.21	N.D.	U	10	0.5	0.21
EPA 8260B	Bromomethane	8.7	50,000	N.D.	U,IH	20	5	3.9	N.D.	U,iH	20	5	3.9	NA NA	N.D.	U,IH	20	5	3.9	N.D.	U,IH	20	5	3.9
	Carbon Tetrachloride	5	520	N.D.	U	1	0.5	0.23	N.D.	U	1	0.5	0.23	NA NA	N.D.	U	1	0.5	0.23	N.D.	U	1	0.5	0.23
1	Chlorobenzene	100	50	N.D.	T Ü	5	0.5	0.17	N.D.	l ŭ	5	0.5	0.17	NA NA	N.D.	l ü	5	0.5	0.17	N.D.	 ŭ	5	0.5	0.17
ŀ	Chloroethane	21,000	16	N.D.	Ū	10	5	2.3	N.D.	Ū	10	5	2.3	NA	N.D.	Ū	10	5	2.3	N.D.	Ū	10	5	2.3
1	Chloroform	70	2,400	N.D.	U	5	0.5	0.46	N.D.	U	5	0.5	0.46	NA	N.D.	U	5	0.5	0.46	N.D.	U	5	0.5	0.46
ı	Chloromethane	1.8	50,000	N.D.	U	10	2	1.8	N.D.	U	10	2	1.8	NA	N.D.	U	10	2	1.8	N.D.	U	10	2	1.8
ı	cis-1,2-Dichloroethylene	70	50,000	N.D.	U	1	0.5	0.48	N.D.	U	1	0.5	0.48	NA	N.D.	U	1	0.5	0.48	N.D.	U	1	0.5	0.48
1	Dibromochloromethane	0.16	50,000	N.D.	U	1	0.5	0.25	N.D.	U	1	0.5	0.25	NA	N.D.	U	1	0.5	0.25	N.D.	U	1	0.5	0.25
	Ethylbenzene	700	30	0.16	J	1 1	0.5	0.14	0.17	J	1 1	0.5	0.14	6.06	N.D.	U	1	0.5	0.14	N.D.	U	1 1	0.5	0.14
	Hexachlorobutadiene	0.86	6	N.D.	U U	1 10	0.5	0.32	N.D.	U	1	0.5	0.32	NA NA	N.D.	U	1	0.5	0.32	N.D.	U	1 1	0.5	0.32
!	Methyl ethyl ketone (2-Butanone)	7,100	8,400	N.D.	<u> </u>	10	5.0	2.2	N.D.	U	10	5.0	2.2	NA NA	N.D.	U	10	5.0	2.2	N.D.	U U	10	5.0	2.2
1	Methyl isobutyl ketone (4-Methyl-2-Pentanone) Methyl tert-butyl Ether	2,000 12	1300	N.D.	U	10	5.0 0.5	4.4 0.31	N.D.	U	10	5.0 0.5	0.31	NA NA	N.D. N.D.	U	10	0.5	0.31	N.D.	U	10	5.0 0.5	0.31
	Methylene chloride	4.8	9,100	N.D.	+	5	1.0	0.64	N.D.	 	5	1.0	0.64	NA NA	N.D.	1 0	5	1.0	0.64	N.D.	1 0	5	1.0	0.64
1	Styrene	100	9,100	N.D.	+	1 1	0.5	0.04	N.D.	l ü −	1	0.5	0.04	NA NA	N.D.	 	1	0.5	0.04	N.D.	 	1 1	0.5	0.04
1	Tetrachloroethylene	5	170	N.D.	 	5	0.5	0.39	N.D.	l ü	5	0.5	0.39	NA NA	N.D.	l ü	5	0.5	0.39	N.D.	 	5	0.5	0.39
1	Toluene	1,000	40	N.D.	 	1	0.5	0.24	N.D.	Ιΰ	1	0.5	0.33	NA NA	N.D.	T Ü	1	0.5	0.24	N.D.	T Ü	1	0.5	0.24
1	trans-1,2- Dichloroethylene	100	260	N.D.	T u	1	0.5	0.37	N.D.	l ŭ	1	0.5	0.37	NA NA	N.D.	T Ü	1	0.5	0.37	N.D.	T Ū	1 1	0.5	0.37
	Trichloroethylene	5	310	N.D.	Ü	1	0.5	0.37	N.D.	Ū	1	0.5	0.37	NA	N.D.	Ü	1	0.5	0.37	N.D.	Ū	1	0.5	0.37
ŀ	Vinyl chloride	2	3,400	N.D.	U	1	0.5	0.3	N.D.	U	1	0.5	0.3	NA	N.D.	U	1	0.5	0.3	N.D.	U	1	0.5	0.3
						1	·		·	·	·	-			 		·		1	1		1	1 7 5	0.23
	Xylenes	10,000	20	0.35	J	1	0.5	0.23	0.35	J	1	0.5	0.23	0.00	N.D.	U	11	1.5	0.23	N.D.	U	11	1.5	0.23

The data are in micrograms per liter (µg/L). Shaded values exceeded the DOH EALs.

Not Analyzed

DOH EALS

DOH Tier 1 Environmental Action Levels for groundwater where groundwater is a current drinking water source and surface water is greater than 150 meters from the site (DOH, Fall 2011).

DL

Detection Limit or Method Detection Limit (MDL)

EPA

Environmental Protection Agency

HD

The chromatographic pattern was inconsistent with the profile of the reference fuel standard.

ICH

Initial calibration verification recovery is above the control limit for this analyte.

ICJ

Initial calibration verification recovery is below the control limit for this analyte.

J

Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.

LOD LOQ NA N.D. Q TPH-g TPH-d

Limit of Detection
Limit of Quantitation
Both results for duplicate pair were non-detect, no RPD calculations
Not Detected
Qualifiers
Total Petroleum Hydrocarbons as gasoline
Total Petroleum Hydrocarbons as diesel
Undetected at DL and is reported as less than the LOD.

Contract No. N62742-12-D-1853

This Page Intentionally Left Blank.

SECTION 4 - SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

On January 27 and 28, 2015, ESI personnel collected groundwater samples from four monitoring wells at the RHSF (wells RHMW01, RHMW02, RHMW03, and RHMW05) and one sampling point at Red Hill Shaft (RHMW2254-01).

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring program at the RHSF, under NAVFAC Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved WP/SAP prepared by ESI. A summary of the analytical results is provided below.

- RHMW01 TPH-d (33 μg/L) and lead (0.0631 μg/L) were the only analytes detected. The concentrations did not exceed the DOH EALs or the SSRBL.
- RHMW02 TPH-d (1,100 and 1,700 μg/L), TPH-g (54 and 59 μg/L), xylenes (0.35 and 0.35 μg/L), acenaphthene (0.59 and 0.55 μg/L), ethylbenzene (0.16 and 0.17 μg/L), fluorene (0.30 and 0.22 μg/L), 1-methylnaphthalene (34 and 25 μg/L), 2-methylnaphthalene (7.6 and 2.7 μg/L), and naphthalene (90 and 63 μg/L) were detected in both the primary and duplicate samples collected. TPH-d, 1-methylnaphthalene, and naphthalene were detected at concentrations above their respective DOH EALs for both drinking water toxicity and gross contamination. However, the TPH-d concentrations did not exceed the SSRBL.
- RHMW03 TPH-d (39 μg/L) was the only analyte detected. The concentration did not exceed the DOH EALs or the SSRBL.
- RHMW05 None of the chemical constituents analyzed for were detected at a concentration at or above the LOD.
- RHMW2254-01 None of the chemical constituents analyzed for were detected at a concentration at or above the LOD.

Groundwater Contaminant Trends

- RHMW01 COPCs detected during this round of quarterly sampling are consistent with the
 historical data for RHMW01. TPH-d has historically been detected at concentrations above
 the DOH EAL for both drinking water toxicity and gross contamination. TPH-d
 concentrations continue to show an overall decreasing trend from a high of 1,500 μg/L in
 February 2005.
- RHMW02 COPCs detected during this round of quarterly sampling are generally consistent with the historical data for RHMW02. TPH-g, TPH-d, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene have historically been detected at concentrations above the DOH EALs. During the January 2015 event, concentrations of TPH-d, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene decreased from the previous event in October 2014, with the concentrations of 2-methylnaphthalene decreasing to levels below the DOH EALs. The concentrations of TPH-g remained below the DOH EALs for gross contamination and drinking water toxicity and were comparable to the concentrations

detected during the previous event. Trichloroethylene was detected once in RHMW02 in September 2005 in the primary sample at a concentration above the DOH EAL for drinking water toxicity; however, trichloroethylene was not detected in the duplicate sample, and this may have been an anomalous result.

- RHMW03 COPCs detected during this round of quarterly sampling are consistent with the historical data for RHMW03. TPH-d has historically been detected at concentrations above the DOH EALs; however, it has not been detected at concentrations above the DOH EALs since October 2010.
- RHMW05 COPCs detected during this round of quarterly sampling are consistent with the
 historical data for RHMW05. TPH-d has historically been detected in RHMW05 at
 concentrations above the DOH EALs for both drinking water toxicity and gross
 contamination; however, it has not been detected at concentrations above the DOH EALs
 since January 2010.
- RHMW2254-01 COPCs detected during this round of quarterly sampling are consistent
 with the historical data for RHMW2254-01. Although the method reporting limits for TPH-d
 exceeded one or both DOH EALs for drinking water toxicity and gross contamination
 between May 2009 and July 2010, TPH-d was last detected in RHMW2254-01 at a
 concentration above the DOH EAL for gross contamination in January 2008.

Conclusions and Recommendations

During the sampling event conducted on January 27 and 28, 2015, TPH-d, 1-methylnaphthalene, and naphthalene in RHMW02 were detected at concentrations exceeding the DOH EALs. The concentration of TPH-d in RHMW01 decreased from the previous event in October 2014 to a concentration below the DOH EALs. Groundwater contaminant concentrations in RHMW03, RHMW05, and RHMW2254-01 remained at low concentrations and did not change significantly from the previous event, or were not detected.

Concentrations of 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene in RHMW02 had shown an increasing trend between March and October 2014; however, concentrations of these three analytes and TPH-d all decreased since the previous event in October 2014. All other analytical results were generally consistent with historical data.

For this event, LODs and LOQs for several analytes were greater than the DOH EALs. However, with the exception of 1,2-dichloroethane, these analytes are not likely to be related to a fuel release, and these elevated LODs and LOQs should not have a significant impact on project objectives.

Based on the groundwater monitoring results and the reported release at Tank 5 in January 2014, continued groundwater monitoring at the wells inside the RHSF tunnel is recommended.

SECTION 5 – FUTURE WORK

Future work includes the second quarter 2015 groundwater monitoring which is tentatively scheduled for April 2015. A quarterly groundwater monitoring report will be prepared to document the sampling event.

This Page Intentionally Left Blank.

SECTION 6 - REFERENCES

Atlas of Hawaii, 1983, Department of Geography, University of Hawaii Press.

DLNR, 1985, Pan Evaporation: State of Hawai'i 1894-1983: Report R74, Division of Water and Land Development, August 1995.

DLNR, 1986, Rainfall Atlas of Hawaii: Report R76, Division of Water and Land Development, June 1986.

DOH, 2000, Hawaii Department of Health, Technical Guidance Manual for Underground Storage Tank Closure and Release Response, March 2000.

DOH, 2011, Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Hawaii Department of Health, Hazard Evaluation and Emergency Response, Fall 2011, Revised January 2012.

DOH, 2013, Hawaii Administrative Rules Title 11, Department of Health, Chapter 281 Underground Storage Tanks (HAR 11-281), Subchapter 7.

DON, 2007, Project Procedures Manual, U.S. Navy Installation Restoration Program, NAVFAC Pacific, Prepared for Pacific Division, Naval Facilities Engineering Command (NAVFAC Pacific), February 2007.

Earth Tech, 1999, Remedial Investigation, Phase II Technical Report, Red Hill Oily Waste Disposal Facility, Halawa, Oahu, Hawaii, Prepared for Naval Facilities Engineering Command, Pearl Harbor, Hawaii, 1999.

Environet, 2010, Work Plan, Long-Term Monitoring, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, September 2010.

ESI, 2012, Work Plan/Sampling and Analysis Plan, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, October 2012.

ESI, 2013a, Fourth Quarter 2012 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, January 2013.

ESI, 2013b, First Quarter 2013 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, April 2013.

ESI, 2013c, Second Quarter 2013 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, July 2013.

ESI, 2013d, Third Quarter 2013 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, September 2013.

ESI, 2014a, Fourth Quarter 2013 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, January 2014.

ESI, 2014b, Groundwater Sampling Report for Additional Sampling, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, January 2014.

ESI, 2014c, Final Groundwater Sampling Report for Tank 5 Release Response on March 5 and 6, 2014, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, March 2014.

ESI, 2014d, Final Groundwater Sampling Report for Tank 5 Release Response on March 10, 2014, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, March 2014.

ESI, 2014e, First Quarter 2014 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, April 2014.

ESI, 2014f, Final Groundwater Sampling Report for Tank 5 Release Response on March 25 and 26, 2014, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, April 2014.

ESI, 2014g, Final Groundwater Sampling Report for Tank 5 Release Response on April 7, 2014, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, April 2014.

ESI, 2014h, Second Quarter 2014 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, June 2014.

ESI, 2014i, Final Groundwater Sampling Report for Tank 5 Release Response on May 27 and 28, 2014, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, June 2014.

ESI, 2014j, Final Groundwater Sampling Report for Tank 5 Release Response on June 23 and 24, 2014, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, July 2014.

ESI, 2014k, Third Quarter 2014 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, September 2014.

ESI, 2015, Fourth Quarter 2014 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, January 2015.

Foote et al., 1972, Soil Survey of the Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii.

Mink, J. F. and Lau, L. S., 1990, Aquifer Identification and Classification for Oahu: Groundwater Protection Strategy for Hawaii: Water Resources Research Center Technical Report No. 179, February 1990.

Stearns, H. T. and Vaksvik, K. N., 1935, Geology and Groundwater Resources of the Island of Oahu, Hawaii: Hawaii Div. Hydrogr. Bull.

Stearns, H. T. and Vaksvik, K. N., 1938, Records of the Drilled Wells on the Island of Oahu, Hawaii: Hawaii Div. Hydrogr. Bull. 4, 213 p.

TEC, 2007, Final Technical Report, Red Hill Bulk Fuel Storage Facility, prepared for Naval Facilities Engineering Command, Pacific, Pearl Harbor, Hawaii, August 2007

TEC, 2008, Final Groundwater Protection Plan, Red Hill Fuel Storage Facility, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, January 2008, revised December 2009.

TEC, 2009, Quarterly Groundwater Monitoring Report, Red Hill Fuel Storage Facility, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, September 2009.

This Page Intentionally Left Blank

FIGURES

APPENDIX A Groundwater Sampling Logs

Well ID:	RHMW01	Location	Red Hil	Bulk Fuel Stora	age Facility	Project No.:	112066		
Initial W	ater Level:	83.63 ft	Date:	1/27/2015		Time:1	205		
Total De	epth of Well:	97.35 ft	_ Person	nel Involved:	Kirk Ma	rkle, Jeff Hatte	mer		
Length o	of Saturated Z	one: 13.72 ft	Weathe	er Conditions:	Not applicable – well is located indoors				
Volume	of Water to be	e Removed: 2.5 L	Method	of Removal:	Bladder Pump				
Water L	evel After Pur	ging: 83.63 ft	Pumpir	ng Rate:	0.10 L/min				
Well Pu	rge Data:								
Time	Volume Remove		Conductivity (mS/cm)	DO (mg/l)	Temperature	e Salinity	Redox (ORP) (mV)		
1220	0.0 L	7.74	0.322	8.96	24.67		-29.9		
1224		7.27	0.322	4.67	24.31		-62.2		
1226		7.07	0.317	2.56	24.19	***************************************	-72.2		
1230		6.99	0.318	2.32	24.19		-73.5		
1238		6.90	0.319	2.29	24.04		-75.7		
1245		6.90	0.320	2.39	24.27		-73.7 -72.8		
			90000000000000000000000000000000000000	***************************************	***************************************	***************************************	20000000000 20000000000000000000000000		
Sample	Withdrawal M	ethod:	Bladder Pu	mp					
Appeara	nce of Sampl	e:							
	Color:		Clear						
	Turbidity	:	None						
	Sedimer	nt:	None						
	Other:		None						
Labarata	am. Analysia D	aramatara and Drac	an estiman	TDII 4 904E	TDU ~ VOC	9260. DALIC	9070a oimi		
Laborato	ory Analysis P	arameters and Pres	servatives:		TPH-g, VOCs -	- 8260; PAHS -	8270C SIM;		
Mumbar	and Times of	Comple Container	6 40~	lead - 6020	mborior 1 E0	oml ambariar	1 250ml HDDE		
	• •	Sample Containers	******************	II VOAS, Z - IL a	amber jar, 1 - 50	om amber jar	, 1 - 250ml HDPE		
•	Identification I		0X [1300]						
Sample:		ave salinity parame Narkle, Jeff Hatteme							
•	d Delivered to:			al Lab	Transporters: F	edEx			
Date:	1/27/2015				Time: 1500		***************************************		
- MI - MI		Ca	pacity of Ca	sing (Gallons/Li	***************************************				

2"-0.16• 4"-0.65 • 8"-2.61 • 10"-4.08 • 12"-5.87

Well ID:	RHMW02	L	₋ocation:	Red Hi	ll Bulk Fuel Stor	age Facility	Project No).: <u> </u>	112066	
Initial Wa	ater Level:	86.35 ft		Date:	1/28/2015		Time:	955		
Total De	pth of Well:	92.9	91 ft	_ Persor	nnel Involved:	Justin Lam, Jeff Hattemer				
Length o	f Saturated Z	one:	6.56 ft	_ Weath	er Conditions:	Not applicable – well is located indoors				
Volume o	of Water to b	e Removed	: <u>5.0 L</u>	Method of Removal:		Bladder Pump				
Water Le	evel After Pur	rging:	86.81 ft	Pumpi	ng Rate:	(0.31 L/min			
Well Pur	ge Data:									
Time	Volum Remov			onductivity (mS/cm)	DO (mg/l)	Temperatur	<u>e</u> Sali	nity	Redox (ORP) (mV)	
1009	0.0 L	7.1	7	0.554	4.47	24.94			-61.0	
1012	1.0 L	7.0)8	0.552	1.51	24.12	-		-105.4	
1015	2.0 L	6.9	8	0.553	1.40	23.85	-		-113.1	
1019	3.0 L	6.9	 96	0.557	1.34	23.77			-116.7	
1022	4.0 L	6.9	 96	0.562	1.30	23.76			-119.1	
	5.0 L			0.563 Bladder Pu	1.28	23.76			-119.8	
Appeara	nce of Samp	le:								
	Color:			Clear						
	Turbidity	***************************************		Low						
	Sedime	nt:		None						
Laborato	Other: ory Analysis F	arameters a	and Prese	None rvatives:	TPH-d - 8015 lead - 6020	; TPH-g, VOCs	- 8260; PAH	<u>s - 827</u>	0c sim;	
Number	and Types of	f Sample Co	ontainers:	16 - 40ml	VOAs, 6 - 1L ar	nber jar, 4 - 500	ml amber ja	r, 4 - 50	00ml HDPE	
	Identification			***************************************	127 MS/MSD [10					
•	mination Pro		Friple Rins				. / 10			
	YSI did not h	no.						***************************************		
Sampled		Justin Lam	·							
	l Delivered to			nvironment	al Lab	Transporters: F	FedEx			
Date:	1/28/2015	***************************************			-	Time: 1500				
-			Cap	pacity of Ca	sing (Gallons/Li	near Feet)				

2"-0.16 • 4"-0.65 • 8"-2.61 • 10"-4.08 • 12"-5.87

Well ID:	RHMW03	Location:	Red Hill	Bulk Fuel Stora	ige Facility Pr	roject No.:	112066		
Initial Wat	er Level:102.6	63 ft	Date:	1/28/2015	Ti	me:855			
Total Dep	th of Well:	110.12 ft	Personi	nel Involved:	Justin Lam, Jeff Hattemer				
Length of	Saturated Zone:	7.49 ft	Weathe	er Conditions:	Not applicable – well is located indoors				
Volume of	Water to be Ren	noved: 4.0 L	_ Method	of Removal:	Blado	ler Pump			
Water Lev	vel After Purging:	102.93 ft	_ Pumpin	g Rate:	0.31	L/min			
Well Purg	e Data:								
Time	Volume Removed		onductivity (mS/cm)	DO (mg/l)	Temperature	Salinity	Redox (ORP) (mV)		
905	0.0 L	7.13	0.775	3.93	27.18	-	67.3		
908	1.0 L	6.98	0.791	2.41	26.67		91.4		
911	2.0 L	6.97	0.790	2.23	26.65	-	92.7		
915	3.0 L	6.96	0.788	2.18	26.70	-	95.4		
918	4.0 L	 6.95	0.787	2.16	26.71	S	95.7		
Sample W	ithdrawal Method		Bladder Pur						
	ce of Sample:								
	Color:		Clear						
	Turbidity:		Low						
	Sediment:		None						
	Other:		None						
Laborator	y Analysis Param	eters and Pres	ervatives:	TPH-d - 8015;	TPH-g, VOCs - 82	60; PAHs - 827	70c sim;		
Number a	nd Types of Sam	ple Containers:	6 - 40m		ımber jar, 1 - 500m	l amber jar, 1 -	250ml HDPE		
	entification Numb	•	[0930]						
•	ination Procedure								
	SI did not have s								
Sampled I		, Jeff Hattemer							
•	Delivered to:	Calscience E	nvironmenta		Transporters: FedE	x			
Date: 1	/28/2015				Time: 1500				
			-	sing (Gallons/Lir 8"-2.61 • 10"-4.	-				

ED_006532_00009888-00055

Well ID:F	RHMW05	Location:	Red Hill	l Bulk Fuel Stora	age Facility	Project No.:	112066		
Initial Wate	r Level: 83	3.03 ft	Date:	1/27/2015		Time:1050	l		
Total Depth	of Well: <u>Ur</u>	nable to Measure	Person	nel Involved:	Kirk Mark	ile, Jeff Hatteme	<u></u>		
Length of S	Saturated Zone	: Unknown	_ Weathe	er Conditions:	Not applicable	indoors			
Volume of V	Water to be Re	emoved: 6.0 L	Method	of Removal:	Bladder Pump				
Water Leve	el After Purging	g: <u>83.03 ft</u>	Pumpir	ng Rate:	0.3				
Well Purge	Data:								
Time	Volume Removed	PH	onductivity (mS/cm)	DO (mg/l)	Temperature	Salinity	Redox (ORP) (mV)		
1055	0.0 L	7.88	0.870	13.07	24.27	_	96.2		
1057	1.0 L	7.90	0.926	7.16	23.08	-	95.4		
1059	2.0 L	7.87	0.926	7.56	23.49	B00	96.5		
1105	3.0 L	7.77	0.927	7.71	23.89	-	98.3		
1107	4.0 L	7.71	0.927	7.72	23.33	_	99.3		
1110	5.0 L	7.69	0.924	7.71	23.16	-	99.1		
1112	6.0 L	7.71	0.923	7.70	23.08	-	99.4		
Sample Wi	thdrawal Meth		Bladder Pur						
	e of Sample:								
	Color:		Clear						
	Turbidity:		None						
	Sediment:		None						
	Other:		None						
Laboratory	Analysis Parar	meters and Pres	ervatives:	************************************	TPH-g, VOCs - 8	3260; PAHs - 827	70c sim;		
				lead - 6020					
	• .	mple Containers	***************************************	il VOAs, 2 - 1L a	amber jar, 1 - 500	mi amber jar, 1 -	1L HDPE		
•	entification Nun		l [1115]						
	nation Procedu								
		salinity paramet							
Sampled by		de, Jeff Hatteme		ol Lob	Transpartare: Fac	4EV			
	elivered to: 27/2015	Calscience E	nvironment		Transporters: <u>Fec</u> Time: 1500	ı⊏X			
Date: <u>1/2</u>	21/201J	Ca	pacity of Ca	sing (Gallons/Lir	***************************************				

Capacity of Casing (Gallons/Linear Feet) 2"-0.16 • 4"-0.65 • 8"-2.61 • 10"-4.08 • 12"-5.87

Well ID: F	RHMW2254	-01	Location	on: <u>F</u>	Red Hill Bulk Fuel Stora		age Facility	Project N	o.:	112066	
Initial Wat	ter Level: _	81.37	' ft	Date	e:	1/27/2015		Time:	855		
Total Dep	th of Well:	No	t applicabl	<u>e</u> F	Personr	nel Involved: _	Kirk Ma	arkle, Jeff H	attemer		
Length of	Saturated Z	:one: <u></u>	Not applica	ible V	Veathe	er Conditions:	Not applicable – well is located indoors				
Volume o	f Water to b	e Remo	oved: <u>6.0</u>	<u>) L</u> N	/lethod	of Removal: _	Bladder Pump				
Water Lev	vel After Pu	ging:	81.37	<u>'ft</u> F	Pumpin	g Rate:	0.50 L/min				
Well Purg	e Data:										
Time	Volum		m I I	Conduc	-	DO (m m/l)	T		lade.	Redox (ORP)	
Time	Remov	<u>ea</u> _	pH	(mS/c		DO (mg/l)	Temperatur	<u> </u>	<u>inity</u>	(mV)	
903	0.0 L		8.36	0.59		8.85	21.67			45.1	
905	1.0 L		8.15	0.59		8.42	21.42		-	53.5	
907	2.0 L		7.91	0.59		8.38	21.46			70.0	
909	3.0 L		7.87	0.59		8.24	21.47			75.1	
911	4.0 L		7.84	0.59		8.14	21.47			78.3	
913 915	5.0 L 6.0 L		7.80	0.59		8.01 8.16	. <u>21.45</u> 21.44		-	82.1 82.4	
	Vithdrawal N			Blade	der Pur	mp					
	Color:			Cle	ear						
	Turbidity	/:		Cle	ear		_				
	Sedime	าt:		No	ne		_				
	Other:	***************************************		No	ne		•				
Laborator	y Analysis F	'arame	ters and P	reservati	ves:	TPH-d - 8015 lead - 200.8	; TPH-g, VOCs	- 8260; PAI	Hs - 827	0c sim;	
Number a	ind Types o	Samp	le Contain	ers: 6	3 - 40m	I VOAs, 2 - 1L	amber jar, 1 - 5	00ml amber	jar, 1 -	1L HDPE	
Sample Id	dentification	Numbe	ers: ES	125 [093							
Decontarr	nination Pro	cedures	: Triple	Rinsed							
Notes: Y	/SI did not h	ave sal	inity paran	neter.							
Sampled			Jeff Hatte								
•	Delivered to		Calscienc	e Enviro	nmenta	al Lab	Transporters: F	FedEx			
Date: 1	/27/2015			<u> </u>			Time: 1500				
						sing (Gallons/Li 8"-2.61 • 10"-4	•				

APPENDIX B

Field Notes

APPENDIX C Laboratory Reports

Calscience

WORK ORDER NUMBER: 15-01-1715

The difference is service

Resulting

Email your PM I

AIR SOL WATER I MARINE CHEMISTRY

Analytical Report For

Client: Environmental Science International, Inc.

Client Project Name: Red Hill LTM 112066

Attention: Jeff Hattemer

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Approved for release on 02/04/2015 by: Terri Chang

Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

NELAPID 00220CA : ACLASS DoBLELAPID ADE 1884 (ISDAEC 17025 2005) | CSDLAC D: 10108 | SCACIMD ID 60LA0150.

Calscience

Contents

Client Project Name:	Red Hill LTM 112066
Work Order Number:	15-01-1715

1	Work Order Narrative	3
2	Client Sample Data	4
	2.1 EPA 8015B (M) TPH Diesel (Aqueous)	4
	2.2 EPA 6020 ICP/MS Metals (Aqueous)	5
	2.3 EPA 8270C SIM PAHs (Aqueous)	6
	2.4 GC/MS GRO/EPA 8260B Volatile Organics (Aqueous)	10
3	Quality Control Sample Data	20
	3.1 MS/MSD	20
	3.2 PDS/PDSD	24
	3.3 LCS/LCSD	25
4	Sample Analysis Summary	30
5	Glossary of Terms and Qualifiers	31
6	Chain-of-Custody/Sample Receipt Form	32

Work Order Narrative

Work Order: 15-01-1715 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 01/28/15. They were assigned to Work Order 15-01-1715.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

The client requested the sample ID changed to ES120X on 01/29/2015 to differentiate the Q1 2015 ID numbers from the ones used for Q4 2014.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

TPH as Diesel

Analytical Report

Date Received: 01/28/15 Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Work Order: 15-01-1715 Preparation: **EPA 3510C** Kailua, HI 96734-2500 Method: EPA 8015B (M) Units: ug/L Project: Red Hill LTM 112066 Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES125		15-01-1715-2-G	01/27/15 09:30	Aqueous	GC 45	01/29/15	01/30/15 10:49	150129B23A
Comment(s):	- Results were evalua	ted to the MDL (DL), cond	centrations >= t	to the MDL (D	L) but < RL (LC	Q), if found, are	e qualified with a	ı "J" flag.
	- TPH as Diesel is qua	entified in the carbon rang	ge C10-C28.					

Parameter Result <u>DL</u> LOD LOQ DF Qualifiers 1.00 U TPH as Diesel <12 11 12 25

Rec. (%) **Control Limits** Qualifiers Surrogate

77 51-141 n-Octacosane

ES124	15-01-1715-4	-H 01/27/15 11:15	Aqueous GC 45	01/29/15	01/30/15 11:06	150129B23A						
Comment(s):	- Results were evaluated to the MDL (DL)	concentrations >:	= to the MDL (DL) but < RL	(LOQ), if found, are	qualified with a "J'	' flag.						
	- TPH as Diesel is quantified in the carbon range C10-C28.											
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	<u>LOD</u>	LOQ [<u>Q</u>	<u>ualifiers</u>						

13

26

1.00

U

12

<13 Surrogate Rec. (%) **Control Limits** Qualifiers

n-Octacosane 51-141

ES120X		15-01-1715-5-H	01/27/15 13:00	Aqueous GC 45	01/29/1					
Comment(s):	- Results were evaluated	d to the MDL (DL), cond	entrations >=	to the MDL (DL) but < R	L (LOQ), if four	d, are qualified	l with a "J" flag.			
	- TPH as Diesel is quantified in the carbon range C10-C28.									
Parameter		Result	DI	LOD	1.00	DF	Qualifiers			

12 25 1.00 TPH as Diesel 33 11 HD

Control Limits Qualifiers Surrogate Rec. (%) n-Octacosane 78 51-141

Method Blank	0	99-15-516-237	N/A Aq	ueous GC 45	01/29/15	01/30/15 05:03	150129B23A
Comment(s):	- Results were evaluated to th	e MDL (DL), conce	ntrations >= to the	MDL (DL) but < R	L (LOQ), if found,	are qualified with a	a "J" flag.
<u>Parameter</u>		Result	<u>DL</u>	LOD	LOQ	<u>DF</u>	<u>Qualifiers</u>
TPH as Diesel		<12	11	12	25	1.00	U
<u>Surrogate</u>		Rec. (%)	Control Limits	Qualifiers			
n-Octacosane		71	51-141				

Analytical Report

Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received:

01/28/15 15-01-1715

Work Order: Preparation:

0.200

0.500

EPA 3005A Filt.

Method:

EPA 6020

Units:

ug/L

Project: Red Hill LTM 112066

Lead

Page 1 of 1

U

Qualifiers

1.00

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES124		15-01-1715-4-G	01/27/15 11:15	Aqueous	ICP/MS 03	01/29/15	01/29/15 22:50	150129L08F
Comment(s):	- Results were evaluated	to the MDL (DL), con	centrations >= t	o the MDL (DI	_) but < RL (LO	Q), if found, a	re qualified with a	"J" flag.
<u>Parameter</u>		<u>Result</u>	<u>DL</u>	LOD	<u>LC</u>	Q	<u>DF</u>	<u>Qualifiers</u>

ES120X 15-01-1715-5-G 01/27/15 ICP/MS 03 01/29/15 01/29/15 150129L08F Aqueous 13:00 22:54 Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.0898

<u>Parameter</u> Result <u>LOD</u> <u>LOQ</u> <u>DF</u> <u>DL</u> Lead 0.631 0.0898 0.200 0.500 1.00

< 0.200

01/29/15 22:28 Method Blank 099-14-497-116 N/A Aqueous ICP/MS 03 01/29/15 150129L08F Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>DF</u> <u>Parameter</u> Result <u>DL</u> <u>LOD</u> <u>LOQ</u> Qualifiers Lead <0.200 0.0898 0.200 0.500 1.00

Analytical Report

Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500 Date Received:

01/28/15

Work Order: Preparation:

15-01-1715 EPA 3510C

Method:

EPA 8270C SIM PAHs

Units:

ug/L

Project: Red Hill LTM 112066

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES125	15-01-1715-2-	01/27/15 09:30	Aqueous	GC/MS AAA	01/30/15	02/03/15 00:28	150130L19
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOC	3	<u>DF</u>	<u>Qualifiers</u>
Naphthalene	<0.050	0.034	0.050	0.20)	1.00	U
2-Methylnaphthalene	<0.050	0.046	0.050	0.20)	1.00	U
1-Methylnaphthalene	<0.10	0.051	0.10	0.20)	1.00	U
Acenaphthylene	<0.050	0.044	0.050	0.20)	1.00	U
Acenaphthene	<0.050	0.027	0.050	0.20)	1.00	U
Fluorene	<0.050	0.042	0.050	0.20)	1.00	U
Phenanthrene	<0.050	0.027	0.050	0.20)	1.00	U
Anthracene	<0.050	0.029	0.050	0.20)	1.00	U
Fluoranthene	<0.050	0.047	0.050	0.20)	1.00	U
Pyrene	<0.050	0.020	0.050	0.20)	1.00	U
Benzo (a) Anthracene	<0.050	0.033	0.050	0.20)	1.00	U
Chrysene	<0.050	0.025	0.050	0.20)	1.00	U
Benzo (k) Fluoranthene	<0.050	0.031	0.050	0.20)	1.00	U
Benzo (b) Fluoranthene	<0.050	0.018	0.050	0.20)	1.00	U
Benzo (a) Pyrene	<0.050	0.022	0.050	0.20)	1.00	U
Indeno (1,2,3-c,d) Pyrene	<0.050	0.021	0.050	0.20)	1.00	U
Dibenz (a,h) Anthracene	<0.050	0.047	0.050	0.20)	1.00	U
Benzo (g,h,i) Perylene	<0.10	0.082	0.10	0.20)	1.00	U
Surrogate	Rec. (%)	Control Limi	ts Qualifi	ers			
Nitrobenzene-d5	60	28-139					
2-Fluorobiphenyl	56	33-144					
p-Terphenyl-d14	63	23-160					

Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Date Received:

01/28/15 15-01-1715

Kailua, HI 96734-2500

Work Order: Preparation:

EPA 3510C

Method:

EPA 8270C SIM PAHs

Units:

ug/L

Project: Red Hill LTM 112066

Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time I Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES124	15-01-1715-4-1	01/27/15 11:15	Aqueous	GC/MS AAA	01/30/15	02/03/15 00:48	150130L19
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >= to th	ne MDL (DL) but < RL (LOC), if found, a	re qualified with	a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOC	<u>)</u>	<u>DF</u>	<u>Qualifiers</u>
Naphthalene	<0.048	0.033	0.048	0.19		1.00	U
2-Methylnaphthalene	<0.048	0.045	0.048	0.19		1.00	U
1-Methylnaphthalene	<0.096	0.050	0.096	0.19		1.00	U
Acenaphthylene	<0.048	0.043	0.048	0.19		1.00	U
Acenaphthene	<0.048	0.026	0.048	0.19		1.00	U
Fluorene	<0.048	0.041	0.048	0.19		1.00	U
Phenanthrene	<0.048	0.026	0.048	0.19		1.00	U
Anthracene	<0.048	0.028	0.048	0.19		1.00	U
Fluoranthene	<0.048	0.045	0.048	0.19		1.00	U
Pyrene	<0.048	0.020	0.048	0.19		1.00	U
Benzo (a) Anthracene	<0.048	0.031	0.048	0.19		1.00	U
Chrysene	<0.048	0.024	0.048	0.19		1.00	U
Benzo (k) Fluoranthene	<0.048	0.030	0.048	0.19		1.00	U
Benzo (b) Fluoranthene	<0.048	0.017	0.048	0.19		1.00	U
Benzo (a) Pyrene	<0.048	0.021	0.048	0.19		1.00	U
Indeno (1,2,3-c,d) Pyrene	<0.048	0.020	0.048	0.19		1.00	U
Dibenz (a,h) Anthracene	<0.048	0.046	0.048	0.19		1.00	U
Benzo (g,h,i) Perylene	<0.096	0.079	0.096	0.19		1.00	U
Surrogata	Pag (9/)	Control Limit	to Ouglis	ioro			
Surrogate Nitrobanzana dE	<u>Rec. (%)</u>	Control Limit	ts Qualif	iers			
Nitrobenzene-d5	61	28-139					
2-Fluorobiphenyl	61	33-144					
p-Terphenyl-d14	67	23-160					

Environmental Science International, Inc.

Kailua, HI 96734-2500

Date Received:

01/28/15 15-01-1715

354 Uluniu Street, Suite 304

Work Order: Preparation:

EPA 3510C

Method:

EPA 8270C SIM PAHs

Units:

ug/L

Project: Red Hill LTM 112066

Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES120X	15-01-1715-5-J	01/27/15 13:00	Aqueous	GC/MS AAA	01/30/15	02/03/15 01:08	150130L19
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >= to th	ne MDL (DL)) but < RL (LOC	(a), if found, a	re qualified with	a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOC	<u>S</u>	<u>DF</u>	<u>Qualifiers</u>
Naphthalene	<0.054	0.037	0.054	0.22	<u>.</u>	1.00	U
2-Methylnaphthalene	<0.054	0.050	0.054	0.22	!	1.00	U
1-Methylnaphthalene	<0.11	0.056	0.11	0.22	!	1.00	U
Acenaphthylene	<0.054	0.048	0.054	0.22	!	1.00	U
Acenaphthene	<0.054	0.029	0.054	0.22	!	1.00	U
Fluorene	< 0.054	0.046	0.054	0.22	!	1.00	U
Phenanthrene	<0.054	0.029	0.054	0.22	!	1.00	U
Anthracene	<0.054	0.031	0.054	0.22	!	1.00	U
Fluoranthene	<0.054	0.051	0.054	0.22	!	1.00	U
Pyrene	<0.054	0.022	0.054	0.22	!	1.00	U
Benzo (a) Anthracene	<0.054	0.035	0.054	0.22	!	1.00	U
Chrysene	<0.054	0.027	0.054	0.22	!	1.00	U
Benzo (k) Fluoranthene	<0.054	0.034	0.054	0.22	!	1.00	U
Benzo (b) Fluoranthene	<0.054	0.019	0.054	0.22	!	1.00	U
Benzo (a) Pyrene	<0.054	0.024	0.054	0.22	!	1.00	U
Indeno (1,2,3-c,d) Pyrene	<0.054	0.023	0.054	0.22	!	1.00	U
Dibenz (a,h) Anthracene	<0.054	0.052	0.054	0.22	2	1.00	U
Benzo (g,h,i) Perylene	<0.11	0.089	0.11	0.22	!	1.00	U
Surrogate	<u>Rec. (%)</u>	Control Limi	<u>ts Qualifi</u>	ers			
Nitrobenzene-d5	51	28-139					
2-Fluorobiphenyl	54	33-144					
p-Terphenyl-d14	60	23-160					

Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received:

01/28/15 15-01-1715

Work Order: Preparation:

EPA 3510C

Method:

EPA 8270C SIM PAHs

Units:

ug/L

Project: Red Hill LTM 112066

Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument		Date/Time QC Batch Analyzed	D
Method Blank	099-15-148-80	N/A	Aqueous	GC/MS AAA)2/02/15 150130L1! ?1:28)
Comment(s): - Results were evaluated	to the MDL (DL), cor	ncentrations >= to th	he MDL (DL) but < RL (LOC), if found, are qu	alified with a "J" flag.	
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOC	<u>DF</u>	<u>Qualifiers</u>	
Naphthalene	<0.050	0.034	0.050	0.20	1.00	U	
2-Methylnaphthalene	<0.050	0.046	0.050	0.20	1.00	U	
1-Methylnaphthalene	<0.10	0.052	0.10	0.20	1.00	U	
Acenaphthylene	<0.050	0.045	0.050	0.20	1.00	U	
Acenaphthene	<0.050	0.027	0.050	0.20	1.00	U	
Fluorene	<0.050	0.043	0.050	0.20	1.00	U	
Phenanthrene	<0.050	0.027	0.050	0.20	1.00	U	
Anthracene	<0.050	0.029	0.050	0.20	1.00	U	
Fluoranthene	<0.050	0.047	0.050	0.20	1.00	U	
Pyrene	<0.050	0.020	0.050	0.20	1.00	U	
Benzo (a) Anthracene	<0.050	0.033	0.050	0.20	1.00	U	
Chrysene	<0.050	0.025	0.050	0.20	1.00	U	
Benzo (k) Fluoranthene	<0.050	0.031	0.050	0.20	1.00	U	
Benzo (b) Fluoranthene	<0.050	0.018	0.050	0.20	1.00	U	
Benzo (a) Pyrene	<0.050	0.022	0.050	0.20	1.00	U	
Indeno (1,2,3-c,d) Pyrene	<0.050	0.021	0.050	0.20	1.00	U	
Dibenz (a,h) Anthracene	<0.050	0.048	0.050	0.20	1.00	U	
Benzo (g,h,i) Perylene	<0.10	0.082	0.10	0.20	1.00	U	
Surrogate	Rec. (%)	Control Limi	its Qualifi	iers			
Nitrobenzene-d5	69	28-139					
2-Fluorobiphenyl	67	33-144					
p-Terphenyl-d14	69	23-160					
L							

Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received:

01/28/15 15-01-1715

Work Order: Preparation:

EPA 5030C

Method:

GC/MS / EPA 8260B

Units:

ug/L

Project: Red Hill LTM 112066

Page 1 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Date/Time Prepared Analyzed	QC Batch II
ESTRIP	15-01-1715-1-A	01/27/15 09:00	Aqueous	GC/MS OO	01/29/15 01/29/15 18:29	150129L018
Comment(s): - Results were evalu	ated to the MDL (DL), con	centrations >= t	o the MDL (DI	_) but < RL (LOC	Ω), if found, are qualified with	n a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOC	<u>DF</u>	Qualifiers
Acetone	<10	6.0	10	20	1.00	U
Benzene	<0.50	0.14	0.50	1.0	1.00	U
Bromodichloromethane	<0.50	0.21	0.50	5.0	1.00	U
Bromoform	<1.0	0.50	1.0	10	1.00	U
Bromomethane	<5.0	3.9	5.0	20	1.00	U,IH
2-Butanone	<5.0	2.2	5.0	10	1.00	U
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1.00	U
Chlorobenzene	<0.50	0.17	0.50	5.0	1.00	U
Chloroethane	<5.0	2.3	5.0	10	1.00	U
Chloroform	<0.50	0.46	0.50	5.0	1.00	U
Chloromethane	<2.0	1.8	2.0	10	1.00	U
Dibromochloromethane	<0.50	0.25	0.50	1.0	1.00	U
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1.00	U
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1.00	U
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1.00	U
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1.00	U
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1.00	U
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1.00	U
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1.00	U
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1.00	U
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1.00	U
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1.00	U
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
Ethylbenzene	<0.50	0.14	0.50	1.0	1.00	U
Methylene Chloride	<1.0	0.64	1.0	5.0	1.00	U
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1.00	U
Styrene	<0.50	0.17	0.50	1.0	1.00	U
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1.00	U
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1.00	U
Tetrachloroethene	<0.50	0.39	0.50	5.0	1.00	U
Toluene	<0.50	0.24	0.50	1.0	1.00	U
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1.00	U
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1.00	U
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1.00	U

Environmental Science International, Inc. 354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received: Work Order:

Preparation:

Method: Units: 01/28/15 15-01-1715

15-01-1715 EPA 5030C

GC/MS / EPA 8260B

ug/L

Project: Red Hill LTM 112066 Page 2 of 10

<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOQ	<u>DF</u>	<u>Qualifiers</u>
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1.00	U
Trichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1.00	U
Vinyl Chloride	<0.50	0.30	0.50	1.0	1.00	U
p/m-Xylene	<1.0	0.30	1.0	10	1.00	U
o-Xylene	<0.50	0.23	0.50	1.0	1.00	U
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1.00	U
Gasoline Range Organics	<30	26	30	50	1.00	U
Surrogate	Rec. (%)	Control Limits	Qualifiers			
Dibromofluoromethane	101	80-126				
1,2-Dichloroethane-d4	105	80-134				
Toluene-d8	97	80-120				
Toluene-d8-TPPH	98	88-112				
1,4-Bromofluorobenzene	92	80-120				

01/28/15

Analytical Report

Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received:

Work Order: 15-01-1715

Preparation: EPA 5030C Method: GC/MS / EPA 8260B

Units: ug/L

Project: Red Hill LTM 112066 Page 3 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument		ate/Time QC Batch ID nalyzed
ES125	15-01-1715-2-A	01/27/15 09:30	Aqueous	GC/MS OO	01/29/15 01 21	/29/15 150129L018 :09
Comment(s): - Results were evaluated	d to the MDL (DL), con	centrations >= t	o the MDL (DI	L) but < RL (LOC	Q), if found, are qual	ified with a "J" flag.
<u>Parameter</u>	Result	<u>DL</u>	LOD	LOC	<u>DF</u>	<u>Qualifiers</u>
Acetone	<10	6.0	10	20	1.00	U
Benzene	<0.50	0.14	0.50	1.0	1.00	U
Bromodichloromethane	<0.50	0.21	0.50	5.0	1.00	U
Bromoform	<1.0	0.50	1.0	10	1.00	U
Bromomethane	<5.0	3.9	5.0	20	1.00	U,IH
2-Butanone	<5.0	2.2	5.0	10	1.00	U
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1.00	U
Chlorobenzene	<0.50	0.17	0.50	5.0	1.00	U
Chloroethane	<5.0	2.3	5.0	10	1.00	U
Chloroform	<0.50	0.46	0.50	5.0	1.00	U
Chloromethane	<2.0	1.8	2.0	10	1.00	U
Dibromochloromethane	<0.50	0.25	0.50	1.0	1.00	U
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1.00	U
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1.00	U
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1.00	U
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1.00	U
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1.00	U
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1.00	U
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1.00	U
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1.00	U
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1.00	U
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1.00	U
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
Ethylbenzene	<0.50	0.14	0.50	1.0	1.00	U
Methylene Chloride	<1.0	0.64	1.0	5.0	1.00	U
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1.00	U
Styrene	<0.50	0.17	0.50	1.0	1.00	U
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1.00	U
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1.00	U
Tetrachloroethene	<0.50	0.39	0.50	5.0	1.00	U
Toluene	<0.50	0.24	0.50	1.0	1.00	U
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1.00	U
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1.00	U
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1.00	U

Environmental Science International, Inc. 354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received:

Work Order:

Preparation:

Method: Units: 15-01-1715 EPA 5030C

GC/MS / EPA 8260B

ug/L

01/28/15

Project: Red Hill LTM 112066

Page 4 of 10

<u>Parameter</u>	Result	<u>DL</u>	LOD	LOQ	<u>DF</u>	Qualifiers
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1.00	U
Trichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1.00	U
Vinyl Chloride	<0.50	0.30	0.50	1.0	1.00	U
p/m-Xylene	<1.0	0.30	1.0	10	1.00	U
o-Xylene	<0.50	0.23	0.50	1.0	1.00	U
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1.00	U
Gasoline Range Organics	<30	26	30	50	1.00	U
Surrogate	Rec. (%)	Control Limits	Qualifiers			

Surrogate	Rec. (%)	Control Limits
Dibromofluoromethane	101	80-126
1,2-Dichloroethane-d4	105	80-134
Toluene-d8	96	80-120
Toluene-d8-TPPH	98	88-112
1,4-Bromofluorobenzene	92	80-120

Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received:

01/28/15 15-01-1715

Work Order: Preparation:

EPA 5030C

Method:

GC/MS / EPA 8260B

Units:

ug/L

Project: Red Hill LTM 112066

Page 5 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Date/Time Prepared Analyzed	QC Batch II
ES124	15-01-1715-4-A	01/27/15 11:15	Aqueous	GC/MS OO	01/29/15 01/29/15 21:36	150129L01
Comment(s): - Results were evalua	ted to the MDL (DL), con	centrations >= t	o the MDL (DI	L) but < RL (LOC	Ω), if found, are qualified with	a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	<u>LOD</u>	LOG	<u>DF</u>	<u>Qualifiers</u>
Acetone	<10	6.0	10	20	1.00	U
Benzene	<0.50	0.14	0.50	1.0	1.00	U
Bromodichloromethane	<0.50	0.21	0.50	5.0	1.00	U
Bromoform	<1.0	0.50	1.0	10	1.00	U
Bromomethane	<5.0	3.9	5.0	20	1.00	U,IH
2-Butanone	<5.0	2.2	5.0	10	1.00	U
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1.00	U
Chlorobenzene	<0.50	0.17	0.50	5.0	1.00	U
Chloroethane	<5.0	2.3	5.0	10	1.00	U
Chloroform	<0.50	0.46	0.50	5.0	1.00	U
Chloromethane	<2.0	1.8	2.0	10	1.00	U
Dibromochloromethane	<0.50	0.25	0.50	1.0	1.00	U
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1.00	U
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1.00	U
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1.00	U
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1.00	U
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1.00	U
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1.00	U
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1.00	U
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1.00	U
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1.00	U
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1.00	U
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
Ethylbenzene	<0.50	0.14	0.50	1.0	1.00	U
Methylene Chloride	<1.0	0.64	1.0	5.0	1.00	U
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1.00	U
Styrene	<0.50	0.17	0.50	1.0	1.00	U
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1.00	U
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1.00	U
Tetrachloroethene	<0.50	0.39	0.50	5.0	1.00	U
Toluene	<0.50	0.24	0.50	1.0	1.00	U
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1.00	U
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1.00	U
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1.00	U

Environmental Science International, Inc. 354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received: Work Order: Preparation:

Method: Units:

01/28/15 15-01-1715 EPA 5030C

GC/MS / EPA 8260B

Project: Red Hill LTM 112066

Page 6 of 10

<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOQ	<u>DF</u>	Qualifiers
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1.00	U
Trichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1.00	U
Vinyl Chloride	<0.50	0.30	0.50	1.0	1.00	U
p/m-Xylene	<1.0	0.30	1.0	10	1.00	U
o-Xylene	<0.50	0.23	0.50	1.0	1.00	U
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1.00	U
Gasoline Range Organics	<30	26	30	50	1.00	U
Surrogate	Rec. (%)	Control Limits	Qualifiers			
Dibromofluoromethane	100	80-126				
1,2-Dichloroethane-d4	105	80-134				
T 1 10		00.400				

Toluene-d8 96 80-120 Toluene-d8-TPPH 97 88-112 1,4-Bromofluorobenzene 91 80-120

Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received:

01/28/15 15-01-1715

Work Order: Preparation:

EPA 5030C

Method:

GC/MS / EPA 8260B

Units:

ug/L

Project: Red Hill LTM 112066

Page 7 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Date/Time Prepared Analyzed	QC Batch IE
ES120X	15-01-1715-5-A	01/27/15 13:00	Aqueous	GC/MS OO	01/29/15 01/29/15 22:03	150129L018
Comment(s): - Results were evaluat	ed to the MDL (DL), con	centrations >= t	o the MDL (DI	L) but < RL (LOC	Q), if found, are qualified with	a "J" flag.
<u>Parameter</u>	Result	<u>DL</u>	LOD	LOC	<u>DF</u>	<u>Qualifiers</u>
Acetone	<10	6.0	10	20	1.00	U
Benzene	<0.50	0.14	0.50	1.0	1.00	U
Bromodichloromethane	<0.50	0.21	0.50	5.0	1.00	U
Bromoform	<1.0	0.50	1.0	10	1.00	U
Bromomethane	<5.0	3.9	5.0	20	1.00	U,IH
2-Butanone	<5.0	2.2	5.0	10	1.00	U
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1.00	U
Chlorobenzene	<0.50	0.17	0.50	5.0	1.00	U
Chloroethane	<5.0	2.3	5.0	10	1.00	U
Chloroform	<0.50	0.46	0.50	5.0	1.00	U
Chloromethane	<2.0	1.8	2.0	10	1.00	U
Dibromochloromethane	<0.50	0.25	0.50	1.0	1.00	U
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1.00	U
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1.00	U
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1.00	U
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1.00	U
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1.00	U
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1.00	U
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1.00	U
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1.00	U
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1.00	U
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1.00	U
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
Ethylbenzene	<0.50	0.14	0.50	1.0	1.00	U
Methylene Chloride	<1.0	0.64	1.0	5.0	1.00	U
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1.00	U
Styrene	<0.50	0.17	0.50	1.0	1.00	U
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1.00	U
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1.00	U
Tetrachloroethene	<0.50	0.39	0.50	5.0	1.00	U
Toluene	<0.50	0.24	0.50	1.0	1.00	U
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1.00	U
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1.00	U
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1.00	U

Environmental Science International, Inc. 354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received: Work Order:

Preparation: Method: Units: 01/28/15 15-01-1715

EPA 5030C GC/MS / EPA 8260B

Page 8 of 10

Qualifiers

U U

U

U U

U

U

U

ug/L

Project: Red Hill LTM 112066

<u>Parameter</u>	Result	<u>DL</u>	LOD	LOQ	DF
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1.00
Trichloroethene	<0.50	0.37	0.50	1.0	1.00
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1.00
Vinyl Chloride	<0.50	0.30	0.50	1.0	1.00
p/m-Xylene	<1.0	0.30	1.0	10	1.00
o-Xylene	<0.50	0.23	0.50	1.0	1.00
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1.00
Gasoline Range Organics	<30	26	30	50	1.00
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
Dibromofluoromethane	102	80-126			
1,2-Dichloroethane-d4	106	80-134			
Toluene-d8	97	80-120			
Toluene-d8-TPPH	98	88-112			
1,4-Bromofluorobenzene	92	80-120			

Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Date Received: Work Order:

15-01-1715 EPA 5030C

Kailua, HI 96734-2500 Preparation:

Method:

GC/MS / EPA 8260B

Units:

ug/L

01/28/15

Project: Red Hill LTM 112066

Page 9 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Date/Time Prepared Analyzed	QC Batch II
Method Blank	099-13-057-75	N/A	Aqueous	GC/MS OO	01/29/15 01/29/15 17:31	150129L018
Comment(s): - Results were evalu	ated to the MDL (DL), cor	ncentrations >= t	o the MDL (DI	_) but < RL (LOC	Q), if found, are qualified with	n a "J" flag.
<u>Parameter</u>	Result	<u>DL</u>	LOD	LOC	<u>DF</u>	Qualifiers
Acetone	<10	6.0	10	20	1.00	U
Benzene	<0.50	0.14	0.50	1.0	1.00	U
Bromodichloromethane	<0.50	0.21	0.50	5.0	1.00	U
Bromoform	<1.0	0.50	1.0	10	1.00	U
Bromomethane	<5.0	3.9	5.0	20	1.00	U
2-Butanone	<5.0	2.2	5.0	10	1.00	U
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1.00	U
Chlorobenzene	<0.50	0.17	0.50	5.0	1.00	U
Chloroethane	<5.0	2.3	5.0	10	1.00	U
Chloroform	<0.50	0.46	0.50	5.0	1.00	U
Chloromethane	<2.0	1.8	2.0	10	1.00	U
Dibromochloromethane	<0.50	0.25	0.50	1.0	1.00	U
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1.00	U
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1.00	U
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1.00	U
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1.00	U
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1.00	U
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1.00	U
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1.00	U
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1.00	U
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1.00	U
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1.00	U
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
Ethylbenzene	<0.50	0.14	0.50	1.0	1.00	U
Methylene Chloride	<1.0	0.64	1.0	5.0	1.00	U
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1.00	U
Styrene	<0.50	0.17	0.50	1.0	1.00	U
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1.00	U
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1.00	U
Tetrachloroethene	<0.50	0.39	0.50	5.0	1.00	U
Toluene	<0.50	0.24	0.50	1.0	1.00	U
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1.00	U
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1.00	U
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1.00	U

Environmental Science International, Inc. 354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Toluene-d8-TPPH

1,4-Bromofluorobenzene

Project: Red Hill LTM 112066

Date Received:

Work Order: Preparation:

Method: Units: 15-01-1715 EPA 5030C

GC/MS / EPA 8260B

ug/

01/28/15

Page 10 of 10

<u>Parameter</u>	Result	<u>DL</u>	LOD	LOQ	<u>DF</u>	Qualifiers
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1.00	U
Trichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1.00	U
Vinyl Chloride	<0.50	0.30	0.50	1.0	1.00	U
p/m-Xylene	<1.0	0.30	1.0	10	1.00	U
o-Xylene	<0.50	0.23	0.50	1.0	1.00	U
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1.00	U
Gasoline Range Organics	<30	26	30	50	1.00	U
Surrogate	Rec. (%)	Control Limits	Qualifiers			
Dibromofluoromethane	99	80-126	<u>Quantitation</u>			
1,2-Dichloroethane-d4	101	80-134				
Toluene-d8	96	80-120				

88-112

80-120

98

Quality Control - Spike/Spike Duplicate

Environmental Science International, Inc.

Date Received:

Work Order:

15-01-1715

Kailua, HI 96734-2500

Preparation:

Method:

EPA 3005A Filt.

EPA 6020

Project: Red Hill LTM 112066 Page 1 of 4

Quality Control Sample ID	Туре		Matrix	Inst	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
ES124	Sample		Aqueou	s ICF	P/MS 03	01/29/15	01/29/15	22:50	150129S08	
ES124	Matrix Spike		Aqueou	s ICF	MS 03	01/29/15	01/29/15	22:34	150129S08	
ES124	Matrix Spike [Duplicate	Aqueou	s ICF	MS 03	01/29/15	01/29/15	22:37	150129S08	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Lead	ND	100.0	109.8	110	107.5	107	80-120	2	0-20	

EPA 8270C SIM PAHs

Quality Control - Spike/Spike Duplicate

Environmental Science International, Inc.

Date Received:

Work Order:

15-01-1715

Kailua, HI 96734-2500

Date Received:

Preparation:

Date Received:

15-01-1715

EPA 3510C

Project: Red Hill LTM 112066 Page 2 of 4

Method:

Quality Control Sample ID	Туре		Matrix		strument	Date Prepared		.	MS/MSD Ba	tch Number
15-01-1609-2	Sample		Aqueous	G	C/MS AAA	01/30/15	01/30/15 02/02/15 22:08 150130S19			
15-01-1609-2	Matrix Spike		Aqueous	G	C/MS AAA	01/30/15	02/02/15	20:48	150130S19	
15-01-1609-2	Matrix Spike	Duplicate	Aqueous	G	C/MS AAA	01/30/15	02/03/15	13:38	150130S19	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Naphthalene	ND	2.000	1.752	88	1.824	91	21-133	4	0-25	
2-Methylnaphthalene	ND	2.000	1.713	86	1.802	90	21-140	5	0-25	
1-Methylnaphthalene	ND	2.000	1.745	87	1.792	90	20-140	3	0-25	
Acenaphthylene	ND	2.000	1.756	88	1.756	88	33-145	0	0-25	
Acenaphthene	ND	2.000	1.836	92	1.863	93	49-121	1	0-25	
Fluorene	ND	2.000	1.830	92	1.810	90	59-121	1	0-25	
Phenanthrene	ND	2.000	1.877	94	1.874	94	54-120	0	0-25	
Anthracene	ND	2.000	1.539	77	1.632	82	27-133	6	0-25	
Fluoranthene	ND	2.000	1.853	93	1.820	91	26-137	2	0-25	
Pyrene	ND	2.000	2.018	101	1.897	95	18-168	6	0-25	
Benzo (a) Anthracene	ND	2.000	1.876	94	1.774	89	33-143	6	0-25	
Chrysene	ND	2.000	1.929	96	1.876	94	17-168	3	0-25	
Benzo (k) Fluoranthene	ND	2.000	1.951	98	1.869	93	24-159	4	0-25	
Benzo (b) Fluoranthene	ND	2.000	1.583	79	1.508	75	24-159	5	0-25	
Benzo (a) Pyrene	ND	2.000	1.673	84	1.621	81	17-163	3	0-25	
Indeno (1,2,3-c,d) Pyrene	ND	2.000	1.726	86	1.722	86	10-171	0	0-25	
Dibenz (a,h) Anthracene	ND	2.000	1.811	91	1.796	90	10-219	1	0-25	
Benzo (g,h,i) Perylene	ND	2.000	1.627	81	1.716	86	10-227	5	0-25	

Quality Control - Spike/Spike Duplicate

Environmental Science International, Inc.

Date Received:

Work Order:

15-01-1715

Kailua, HI 96734-2500

Date Received:

Preparation:

Date Received:

Preparation:

Method: GC/MS / EPA 8260B

Project: Red Hill LTM 112066 Page 3 of 4

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepare	ed Date Ana	lyzed	MS/MSD Ba	atch Number
15-01-1609-2	Sample		Aqueous	5	GC/MS OO	01/29/15	01/29/15	18:56	150129S03	9
15-01-1609-2	Matrix Spike		Aqueous	5	GC/MS OO	01/29/15	01/29/15	19:22	150129S03	9
15-01-1609-2	Matrix Spike	Duplicate	Aqueous	3	GC/MS OO	01/29/15	01/29/15	19:49	150129803	9
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Red	MSD c. Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Acetone	ND	50.00	101.2	202	106.5	213	40-140	5	0-20	3
Benzene	ND	50.00	44.16	88	44.64	89	80-120	1	0-20	
Bromodichloromethane	ND	50.00	44.82	90	45.91	92	75-120	2	0-20	
Bromoform	ND	50.00	44.29	89	46.61	93	70-130	5	0-20	
Bromomethane	ND	50.00	60.69	121	49.43	99	30-145	20	0-20	
2-Butanone	ND	50.00	61.40	123	65.63	131	30-150	7	0-20	
Carbon Tetrachloride	ND	50.00	39.91	80	41.28	83	65-140	3	0-20	
Chlorobenzene	ND	50.00	47.73	95	48.32	97	80-120	1	0-20	
Chloroethane	ND	50.00	41.79	84	41.02	82	60-135	2	0-20	
Chloroform	ND	50.00	46.18	92	46.34	93	65-135	0	0-20	
Chloromethane	ND	50.00	39.45	79	38.78	78	40-125	2	0-20	
Dibromochloromethane	ND	50.00	48.15	96	50.21	100	60-135	4	0-20	
1,2-Dibromo-3-Chloropropane	ND	50.00	36.92	74	38.82	78	50-130	5	0-20	
1,2-Dibromoethane	ND	50.00	50.57	101	52.07	104	80-120	3	0-20	
1,2-Dichlorobenzene	ND	50.00	47.95	96	48.23	96	70-120	1	0-20	
1,3-Dichlorobenzene	ND	50.00	47.14	94	47.15	94	75-125	0	0-20	
1,4-Dichlorobenzene	ND	50.00	47.60	95	47.53	95	75-125	0	0-20	
1,1-Dichloroethane	ND	50.00	42.07	84	42.56	85	70-135	1	0-20	
1,2-Dichloroethane	ND	50.00	51.51	103	52.61	105	70-130	2	0-20	
1,1-Dichloroethene	ND	50.00	42.04	84	42.35	85	70-130	1	0-20	
c-1,2-Dichloroethene	ND	50.00	44.23	88	45.20	90	70-125	2	0-20	
t-1,2-Dichloroethene	ND	50.00	40.55	81	41.70	83	60-140	3	0-20	
1,2-Dichloropropane	ND	50.00	43.82	88	44.82	90	75-125	2	0-20	
c-1,3-Dichloropropene	ND	50.00	43.03	86	44.24	88	70-130	3	0-20	
t-1,3-Dichloropropene	ND	50.00	41.92	84	43.75	87	55-140	4	0-20	
Ethylbenzene	ND	50.00	45.53	91	46.40	93	75-125	2	0-20	
Methylene Chloride	ND	50.00	41.82	84	42.37	85	55-140	1	0-20	
4-Methyl-2-Pentanone	ND	50.00	44.55	89	47.13	94	60-135	6	0-20	
Styrene	ND	50.00	44.83	90	45.51	91	65-135	1	0-20	
1,1,1,2-Tetrachloroethane	ND	50.00	45.01	90	46.20	92	80-130	3	0-20	
1,1,2,2-Tetrachloroethane	ND	50.00	0.2428	0	1.304	3	65-130	137	0-20	3,4
Tetrachloroethene	ND	50.00	68.54	137	69.48	139	45-150	1	0-20	
Toluene	ND	50.00	44.70	89	45.03	90	75-120	1	0-20	
1,2,4-Trichlorobenzene	ND	50.00	47.30	95	46.60	93	65-135	1	0-20	
1,1,1-Trichloroethane	ND	50.00	42.95	86	43.94	88	65-130	2	0-20	

Quality Control - Spike/Spike Duplicate

Environmental Science International, Inc.

Date Received:

Work Order:

15-01-1715

Kailua, HI 96734-2500

Preparation:

Method:

GC/MS / EPA 8260B

Project: Red Hill LTM 112066 Page 4 of 4

<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Hexachloro-1,3-Butadiene	ND	50.00	46.50	93	46.05	92	50-140	1	0-20	
1,1,2-Trichloroethane	ND	50.00	46.30	93	48.01	96	75-125	4	0-20	
Trichloroethene	ND	50.00	77.69	155	78.02	156	70-125	0	0-20	3
1,2,3-Trichloropropane	ND	50.00	38.71	77	39.92	80	75-125	3	0-20	
Vinyl Chloride	ND	50.00	43.44	87	42.43	85	50-145	2	0-20	
p/m-Xylene	ND	100.0	90.64	91	90.75	91	75-130	0	0-20	
o-Xylene	ND	50.00	45.07	90	45.59	91	80-120	1	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	43.30	87	45.26	91	65-125	4	0-20	

75-125

Lead

Quality Control - PDS

Environmental Science International, Inc.

Date Received:

Work Order:

15-01-1715

Kailua, HI 96734-2500

Date Received:

Work Order:

15-01-1715

EPA 3005A Filt.

Kailua, HI 96734-2500 Preparation: EPA 3005A Filt.

Method: EPA 6020

Project: Red Hill LTM 112066 Page 1 of 1

Quality Control Sample ID	Туре	Ma	atrix I	nstrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number	
ES124	Sample	Ac	queous l	CP/MS 03	01/29/15 00:00	01/29/15 22:50	150129S08	
ES124	PDS	Ac	queous I	CP/MS 03	01/29/15 00:00	01/29/15 22:40	150129S08	
<u>Parameter</u>		Sample Conc.	Spike Added	PDS Conc.	. PDS %Re	<u> %Rec. 0</u>	L Qualifiers	

111.4

111

100.0

ND

RPD: Relative Percent Difference.

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501

CL: Control Limits

Quality Control - LCS/LCSD

Environmental Science International, Inc.

Date Received:

Work Order:

15-01-1715

Kailua, HI 96734-2500

Preparation:

Method:

Page 1 of 5

Quality Control Sample ID	Туре	Mai	trix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-516-237	LCS	Aqı	ueous	GC 45	01/29/15	01/3	0/15 05:20	150129B23A	
099-15-516-237	LCSD	Aqı	ieous	GC 45	01/29/15	01/3	0/15 05:38	150129B23A	
Parameter	Spike Addec	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	2000	1741	87	1692	85	60-132	3	0-11	

Quality Control - LCS

Environmental Science International, Inc. 354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Project: Red Hill LTM 112066

Date Received:

Work Order:
Preparation:
Method:

EPA 3005A Filt. EPA 6020

01/28/15

15-01-1715

Page 2 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-497-116	LCS	Aqueous	ICP/MS 03	01/29/15	01/29/15 22:31	150129L08F
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Lead		100.0	104.5	105	80-12	0

Quality Control - LCS

Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Benzo (g,h,i) Perylene

Date Received:

01/28/15 15-01-1715

Work Order: Preparation:

EPA 3510C

Method:

EPA 8270C SIM PAHs

Project: Red Hill LTM 112	2066				F	Page 3 of 5
Quality Control Sample ID	Туре	Matrix	Instrument Da	te Prepared Date	Analyzed LCS Ba	tch Number
099-15-148-80	LCS	Aqueous	GC/MS AAA 01/	/30/15 02/03	/15 03:08 150130	L19
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	Qualifiers
Naphthalene		2.000	1.510	75	21-133	
2-Methylnaphthalene		2.000	1.537	77	21-140	
1-Methylnaphthalene		2.000	1.528	76	20-140	

1.351

68

25-157

2.000

Quality Control - LCS/LCSD

Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Project: Red Hill LTM 112066

Date Received:

01/28/15 15-01-1715

Work Order: Preparation:

EPA 5030C

Method:

GC/MS / EPA 8260B

Page 4 of 5

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-13-057-75	LCS	Aqu	ieous	GC/MS OO	01/29/15	01/29	/15 16:06	150129L018	
099-13-057-75	LCSD	Aqu	ieous	GC/MS OO	01/29/15	01/29	/15 16:33	150129L018	
<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Acetone	50.00	87.61	175	N/A	N/A	40-140	N/A	0-20	Х
Benzene	50.00	46.83	94	N/A	N/A	80-120	N/A	0-20	
Bromodichloromethane	50.00	47.24	94	N/A	N/A	75-120	N/A	0-20	
Bromoform	50.00	46.74	93	N/A	N/A	70-130	N/A	0-20	
Bromomethane	50.00	53.74	107	N/A	N/A	30-145	N/A	0-20	
2-Butanone	50.00	74.86	150	N/A	N/A	30-150	N/A	0-20	
Carbon Tetrachloride	50.00	45.16	90	N/A	N/A	65-140	N/A	0-20	
Chlorobenzene	50.00	49.91	100	N/A	N/A	80-120	N/A	0-20	
Chloroethane	50.00	46.95	94	N/A	N/A	60-135	N/A	0-20	
Chloroform	50.00	48.63	97	N/A	N/A	65-135	N/A	0-20	
Chloromethane	50.00	42.46	85	N/A	N/A	40-125	N/A	0-20	
Dibromochloromethane	50.00	50.11	100	N/A	N/A	60-135	N/A	0-20	
1,2-Dibromo-3-Chloropropane	50.00	39.79	80	N/A	N/A	50-130	N/A	0-20	
1,2-Dibromoethane	50.00	51.49	103	N/A	N/A	80-120	N/A	0-20	
1,2-Dichlorobenzene	50.00	49.75	100	N/A	N/A	70-120	N/A	0-20	
1,3-Dichlorobenzene	50.00	49.91	100	N/A	N/A	75-125	N/A	0-20	
1,4-Dichlorobenzene	50.00	49.48	99	N/A	N/A	75-125	N/A	0-20	
1,1-Dichloroethane	50.00	46.12	92	N/A	N/A	70-135	N/A	0-20	
1,2-Dichloroethane	50.00	52.47	105	N/A	N/A	70-130	N/A	0-20	
1,1-Dichloroethene	50.00	44.94	90	N/A	N/A	70-130	N/A	0-20	
c-1,2-Dichloroethene	50.00	47.74	95	N/A	N/A	70-125	N/A	0-20	
t-1,2-Dichloroethene	50.00	44.53	89	N/A	N/A	60-140	N/A	0-20	
1,2-Dichloropropane	50.00	46.70	93	N/A	N/A	75-125	N/A	0-20	
c-1,3-Dichloropropene	50.00	47.08	94	N/A	N/A	70-130	N/A	0-20	
t-1,3-Dichloropropene	50.00	47.60	95	N/A	N/A	55-140	N/A	0-20	
Ethylbenzene	50.00	48.75	97	N/A	N/A	75-125	N/A	0-20	
Methylene Chloride	50.00	44.38	89	N/A	N/A	55-140	N/A	0-20	
4-Methyl-2-Pentanone	50.00	45.89	92	N/A	N/A	60-135	N/A	0-20	
Styrene	50.00	47.01	94	N/A	N/A	65-135	N/A	0-20	
1,1,1,2-Tetrachloroethane	50.00	48.20	96	N/A	N/A	80-130	N/A	0-20	
1,1,2,2-Tetrachloroethane	50.00	40.07	80	N/A	N/A	65-130	N/A	0-20	
Tetrachloroethene	50.00	57.95	116	N/A	N/A	45-150	N/A	0-20	
Toluene	50.00	46.98	94	N/A	N/A	75-120	N/A	0-20	
1,2,4-Trichlorobenzene	50.00	49.94	100	N/A	N/A	65-135	N/A	0-20	
1,1,1-Trichloroethane	50.00	48.36	97	N/A	N/A	65-130	N/A	0-20	
Hexachloro-1,3-Butadiene	50.00	49.00	98	N/A	N/A	50-140	N/A	0-20	

Quality Control - LCS/LCSD

Environmental Science International, Inc. 354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Project: Red Hill LTM 112066

Date Received:

Work Order:
Preparation:

Method:

01/28/15 15-01-1715 EPA 5030C

GC/MS / EPA 8260B

Page 5 of 5

<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
1,1,2-Trichloroethane	50.00	48.87	98	N/A	N/A	75-125	N/A	0-20	
Trichloroethene	50.00	50.10	100	N/A	N/A	70-125	N/A	0-20	
1,2,3-Trichloropropane	50.00	40.04	80	N/A	N/A	75-125	N/A	0-20	
Vinyl Chloride	50.00	47.19	94	N/A	N/A	50-145	N/A	0-20	
p/m-Xylene	100.0	95.89	96	N/A	N/A	75-130	N/A	0-20	
o-Xylene	50.00	47.74	95	N/A	N/A	80-120	N/A	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	47.26	95	N/A	N/A	65-125	N/A	0-20	
Gasoline Range Organics	1000	1077	108	1121	112	80-120	4	0-20	

Sample Analysis Summary Report

Work Order: 15-01-1715				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6020	EPA 3005A Filt.	776	ICP/MS 03	1
EPA 8015B (M)	EPA 3510C	682	GC 45	1
EPA 8270C SIM PAHs	EPA 3510C	907	GC/MS AAA	1
GC/MS / EPA 8260B	EPA 5030C	849	GC/MS OO	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 15-01-1715 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
DL	The Detection Limit (DL) is the smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
ICH	Initial calibration verification recovery is above the control limit for this analyte.
ICJ	Initial calibration verification recovery is below the control limit for this analyte.
IH	Calibration verification recovery is above the control limit for this analyte.
IJ	Calibration verification recovery is below the control limit for this analyte.
J	Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
LOD	The Limit of Detection (LOD) is the smallest amount or concentration of a substance that must be present in a sample in order to be detected at 99% confidence level.
LOQ	The Limit of Quantitation (LOQ) is the lowest concentration of a substance that produces a quantitative result within specified limits of precision and bias.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
U	Undetected at Detection Limit (DL) and is reported as less than the Limit of Detection (LOD).
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

ORIGIN ID:HNLA (714) 895-5494 CALSCIENCE ENVIRONMENTAL LAB

7440 LINCOLN WAY.

GARDEN GROVE, CA 928411427 UNITED STATES US SHIP DATE: 27JAN15 ACTWGT: 55.6 LB CAD: /POS1525 DIMS: 23x15x14 IN

BILL SENDER

 SAMPLE CONTROL CALSCIENCE LABORTORIES 7440 LINCOLN WAY

GARDEN GROVE CA 92841

(714) 895-5494

REF:

FedEx Express

TRK# 8059 2709 6788

WED - 28 JAN AA Standard overnight

WZ APVA

92841 ca-us SNA

)pen End of FedEx Pouch Here

Calscience

WORK ORDER #: **15-01-** □ □ □

SAMPLE ANOMALY FORM

SAMPLE	ES - CC	NTAIN	ERS & L	ABELS:			Comme	Comments:				
SAMPLES - CONTAINERS & LABELS: Sample(s) NOT RECEIVED but listed on COC Sample(s) received but NOT LISTED on COC Holding time expired − list sample ID(s) and test Insufficient quantities for analysis − list test Improper container(s) used − list test Improper preservative used − list test No preservative noted on COC or label − list test & notify lab Sample labels illegible − note test/container type Sample label(s) do not match COC − Note in comments Sample ID Date and/or Time Collected Project Information								ents:				

		ntainer(S)				***************************************					
	Analys		2222	ata al Ni C	_ 1							
	The Salar Salar Salar			nised - Note	e in comr	nents	Name and the second of the sec					
			n sample	container								
	Broken		not labal	~ d					,,,.,,			
		the second second	not label		Note in a	ommente	***************************************			7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
	sampie Flat	COLITAINE	ii (ə) com	promised –	INOTA III (OHIHEHRS	***************************************			WIND MAN TO THE TOTAL PROPERTY OF THE TOTAL		
		w in vol	ıme						MANAGER MANAGER STORY OF THE			
				l - duplicate	han sul	nmitted)						
	2.55			o Calscienc	-	•	*		,			
				Client's T			******		MSC TO THE TOTAL PROPERTY OF THE TOTAL PROPE			
						J ,						
		englight the tradical	3 1 3 3	h Bubble >		r ¼ inch:	**************************************					
		Jonal	TOLO WILL		T 1	. / 4 : 11 🔾 : 11						
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont. received		Analysis		
4	F	b										
				A A COLOR DE COMPANION DE CONTRACTOR DE CONT								
				State of the state					VALUE			
									·			
L	THE PROPERTY OF THE PROPERTY O						***************************************		p			
Commen	ts:		AMARIAN MANAGEMENTAL SALES SAL			А ДИЛИ <mark>ДА Б</mark> УСТАНИКА В ВИНКА В ВОПОТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИТИТ		MANAGEMENT OF THE STATE OF THE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
*Transferr	ad at Cliv	ant'e requi		ANTHORN STATE OF THE STATE OF T			Ir	nitial / Da	te: 6	19 01 /28/15		
Halloidil	ou at On	one o roqu	JJ.				***					

SOP T100_090 (06/02/14)

Calscience

WORK ORDER #: 15-01-

SAMPLE RECEIPT FORM

Cooler 1 of 1 01/90/15

CLIENT: EST	DATE: _	01/28	/ 15
TEMPERATURE: Thermometer ID: SC4 (Criteria: 0.0 °C – 6.0 °C, not frozen	except se	diment/tissu	e)
Temperature $2.7 \text{°C} + 0.2 \text{°C} \text{(CF)} = 2.9 \text{°C}$	∄Blank	☐ Sampl	е
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same da	ay of samp	ing.	
☐ Received at ambient temperature, placed on ice for transport by Co			
Ambient Temperature: ☐ Air ☐ Filter		Checked b	y: <u>15</u>
CUSTODY SEALS INTACT:			i <
☐ Cooler ☐ ☐ No (Not Intact) ☐ Not Present	□ N/A		E .
☑ Sample □ □ No (Not Intact) □ Not Present		Checked by	y:
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	Z.		
COC document(s) received complete			
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
\square No analysis requested. \square Not relinquished. \square No date/time relinquished.			
Sampler's name indicated on COC		Ø	
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition	d		
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time	7		
Aqueous samples received within 15-minute holding time			g
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen			Z
Proper preservation noted on COC or sample container	Ø		
Unpreserved vials received for Volatiles analysis	Sight	7	
Volatile analysis container(s) free of headspace	21/2817	Ø.	
Tedlar bag(s) free of condensation CONTAINER TYPE:		Ц	Z
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores Aqueous: ☑VOA ☑VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	s [®] □Terra	aCores [®] □_	***************************************
Aqueous: ØVÕA ØVÕÄĥ □VOAna₂ □125AGB □125AGBh □125AGBp	∠ 1AGB	□1AGB na ₂ [∃1AGB s
□500AGB Ø500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1РВ	□1PB na □	
□250PB ☑250PBn □125PB □125PB znna □100PJ □100PJ na ₂ ☑250PB □125PB □125PB znna □100PJ □100PJ na 2 ☑250PB □100PJ □100PJ na 2 ☑250PB □100PJ na 2 ☑250PB □100PJ □100PJ na 2 ☑250PB □100PJ □100PJ na 2 ☑250PB □100PJ □100P	SopBoj	<u></u> <u></u>	
Air: Tedlar® Canister Other: Trip Blank Lot#: 1409681 Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: En	Labeled	/Checked by Reviewed by:	81
Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +NaO			

n to Contents

Terri Chang

From: Domonkos Feher [DFeher@esciencei.com]
Sent: Thursday, January 29, 2015 11:41 AM

To: Terri Chang

Cc: Jeff Hattemer; Ann Dang; Scott Simmons

Subject: 15-01-1715 and 15-01-1609

Terri,

The following Sample ID's have already been used for the Q4 2014 monitoring event:

Sample receipt 15-01-1715:

ES120

Sample receipt 15-01-1609: ES121 (ES121 MS/MSD)

ES122

Please append an "X" to the Sample IDs in the final report, to differentiate the Q1 2015 ID numbers from the ones used for Q4 2014. The new sample IDs should read:

ES120X

ES121X (ES121X MS/MSD)

ES122X

Please include this email in the COC sections of the final laboratory reports as a record for the sample ID change. Mention the change in the case narratives.

Thank you,

Domonkos Fehér, Ph.D.

Project Chemist

Environmental Science International, Inc.

354 Uluniu Street, Suite 304, Kailua, Hawaii 96734 Cell: (808) 232-1261, Office: (808) 261-0740 ext. 118;

Email: dfeher@esciencei.com

Notify us here to report this email as spam.

Supplemental Report 1

Calscience

WORK ORDER NUMBER: 15-01-1715

The difference is service

Resulting

Email your PMI

AIR SOL WATER I MARINE CHEMISTRY

Analytical Report For

Client: Environmental Science International, Inc.

Client Project Name: Red Hill LTM 112066

Attention: Jeff Hattemer

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Approved for release on 02/04/2015 by: Terri Chang

Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

NELAPID 00228CA : ACLASS DoBLELAPID ADE 1884 (ISDAEC 17025 2005) | CSDLAC D: 10108 | SCACIMD ID 80LA0130.

Calscience

Contents

	Number: 15-01-1715	
1	Work Order Narrative	3
2	Client Sample Data	2
3	Quality Control Sample Data. 3.1 MS/MSD. 3.2 LCS/LCSD.	5
4	Sample Analysis Summary	7
5	Glossary of Terms and Qualifiers	8
6	Chain-of-Custody/Sample Receipt Form	ç

Work Order Narrative

Work Order: 15-01-1715 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 01/28/15. They were assigned to Work Order 15-01-1715.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Environmental Science International, Inc.

Date Received:

Work Order:

15-01-1715

Kailua, HI 96734-2500

Preparation:

Method:

Units:

Units:

Date Received:

01/28/15

Work Order:

15-01-1715

Preparation:

N/A

Method:

Units:

Ug/L

Project: Red Hill LTM 112066 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES125UF	15-01-1715-3-A	01/27/15 09:30	Aqueous	ICP/MS 03	01/29/15	01/30/15 00:35	150129L07

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter
Lead - Result - Re

Method Blank	099-16-094-697	N/A A	queous ICP/MS 03		1/29/15 150129L07 3:29
Comment(s):	- Results were evaluated to the MDL (DL), co	oncentrations >= to the	MDL (DL) but < RL (LOQ), if found, are qua	alified with a "J" flag.
<u>Parameter</u>	Re	sult RL	MDL	<u>DF</u>	<u>Qualifiers</u>
Lead	<0	.0898 1.00	0.0898	1.00	U

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Quality Control - Spike/Spike Duplicate

Environmental Science International, Inc.

Date Received:

Work Order:

15-01-1715

Kailua, HI 96734-2500

Preparation:

Method:

Date Received:

01/28/15

N/A

EPA 200.8

Project: Red Hill LTM 112066 Page 1 of 1

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
ES125UF	Sample		Aqueous	i IC	P/MS 03	01/29/15	01/30/15	00:35	150129S07	
ES125UF	Matrix Spike		Aqueous	i IC	P/MS 03	01/29/15	01/30/15	00:18	150129807	
ES125UF	Matrix Spike Du	iplicate	Aqueous	. IC	P/MS 03	01/29/15	01/30/15	00:22	150129807	
Parameter		<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Lead	ND .	100.0	111.0	111	110.1	110	80-120	1	0-20	

N/A

Quality Control - LCS

Date Received: 01/28/15 Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Work Order: 15-01-1715 Preparation: Kailua, HI 96734-2500

> Method: EPA 200.8

Project: Red Hill LTM 112066 Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared		Batch Number
099-16-094-697	LCS	Aqueous	ICP/MS 03 0	1/29/15	01/29/15 23:59 1501	29L07
<u>Parameter</u>		Spike Added	Conc. Recovered	d LCS %Re	c. %Rec. CL	<u>Qualifiers</u>
Lead		100.0	103.9	104	80-120	

Sample Analysis Summary Report

Work Order: 15-01-1715				Page 1 of 1
<u>Method</u>	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 200.8	N/A	776	ICP/MS 03	1

Glossary of Terms and Qualifiers

Work Order: 15-01-1715 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
DL	The Detection Limit (DL) is the smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
ICH	Initial calibration verification recovery is above the control limit for this analyte.
ICJ	Initial calibration verification recovery is below the control limit for this analyte.
IH	Calibration verification recovery is above the control limit for this analyte.
IJ	Calibration verification recovery is below the control limit for this analyte.
J	Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
LOD	The Limit of Detection (LOD) is the smallest amount or concentration of a substance that must be present in a sample in order to be detected at 99% confidence level.
LOQ	The Limit of Quantitation (LOQ) is the lowest concentration of a substance that produces a quantitative result within specified limits of precision and bias.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
U	Undetected at Detection Limit (DL) and is reported as less than the Limit of Detection (LOD).
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

ORIGIN ID:HNLA (714) 895-5494 CALSCIENCE ENVIRONMENTAL LAB

7440 LINCOLN WAY.

GARDEN GROVE, CA 928411427 UNITED STATES US SHIP DATE: 27JAN15 ACTWGT: 55.6 LB CAD: /POS1525 DIMS: 23x15x14 IN

BILL SENDER

SAMPLE CONTROL
CALSCIENCE LABORTORIES
7440 LINCOLN WAY

GARDEN GROVE CA 92841

(714) 895-6494

REF:

FedEx Express

7HK# 8059 2709 6788

WED - 28 JAN AA Standard overnight

WZ APVA

92841 ca-us SNA

)pen End of FedEx Pouch Here

Calscience

WORK ORDER #: **15-01-** □ □ □

SAMPLE ANOMALY FORM

SAMPLE	ES - CO	NTAINI	ERS & L	ABELS:			Comments:			
Sample(s) NOT RECEIVED but listed on COC Sample(s) received but NOT LISTED on COC Holding time expired − list sample ID(s) and test Insufficient quantities for analysis − list test Improper container(s) used − list test Improper preservative used − list test No preservative noted on COC or label − list test & notify lab Sample labels illegible − note test/container type Sample labels(s) do not match COC − Note in comments Sample ID Date and/or Time Collected Project Information # of Container(s) Analysis Sample container(s) compromised − Note in comments Water present in sample container Broken Sample container(s) not labeled Air sample container(s) compromised − Note in comments Flat Very low in volume Leaking (Not transferred - duplicate bag submitted) Leaking (transferred into Calscience Tedlar® Bag*)										
		egi estre estado.		h Bubble >		r ¼ inch:				
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont. received	Analysis	
4	F	k								
				- Coronia de la coronia de la						
Commen	Comments:									
*Transferr	ed at Clie	ent's requ	est.	<u></u>			Ir	nitial / Da	te: 617 01 /28/15	

SOP T100_090 (06/02/14)

Calscience

WORK ORDER #: 15-01- 1 7

SAMPLE RECEIPT FORM Cooler 1 of 1

CLIENT: ESI	DATE:	01/28	715
TEMPERATURE: Thermometer ID: SC4 (Criteria: 0.0 °C – 6.0 °C, not froze	n except se	ediment/tiss	ue)
Temperature $2 \cdot 7 \text{ °C} + 0.2 \text{ °C} \text{ (CF)} = 2 \cdot 9 \text{ °C}$	Market Control	☐ Samp	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)		·	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same of	day of samo	lina.	
☐ Received at ambient temperature, placed on ice for transport by C		9.	
	ourier.	Checked	hv: 15
Ambient Temperature: ☐ Air ☐ Filter		Cilecked	чу. <u> </u>
CUSTODY SEALS INTACT:			
☑ Cooler ☐ ☐ No (Not Intact) ☐ Not Present	□ N/A	Checked I	oy:
☑ Sample □ □ □ No (Not Intact) □ Not Present		Checked I	ру: <u>689</u>
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	Ø,		
COC document(s) received complete	🗹		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC	_	Z	
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition	. d		
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time	. 🗾		
Aqueous samples received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen	О		Z
Proper preservation noted on COC or sample container	🖊		
Unpreserved vials received for Volatiles analysis	W		
Volatile analysis container(s) free of headspace	28/15	N.	
Tedlar bag(s) free of condensation CONTAINER TYPE:	🗆 `		
Solid: 40zCGJ 80zCGJ 160zCGJ Sleeve () EnCore	es® □Ţerra	aCores [®] □	5
Aqueous: ØVOA ØVOAh □VOAna₂ □125AGB □125AGBh □125AGB	Z1AGB	□1AGB na ₂	□1AGBs
□500AGB Ø500AGJ □500AGJs □250AGB □250CGB □250CGB	s □1PB	□1PB na [□500PB
□250PB ☑250PBn □125PB □125PBznna □100PJ □100PJna ₂ ☑	250 pBol -]
Air: Tedlar [®] Canister Other: Trip Blank Lot#: 140908 Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: E Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +N	<u>B</u> Labeled	Reviewed by	1: <u>81</u>

RAW DATA SHEET FOR METHOD: EPA 8015B (M)

WORK ORDER:

15-01-1715

INSTRUMENT:

GC 45

EXTRACTION:

EPA 3510C

D/T EXTRACTED: 2015-01-29 00:00 ANALYZED BY:

682 D/T ANALYZED:

2015-01-30 11:24

REVIEWED BY: D/T REVIEWED:

DATA FILE:

W:\GC 45\GC 45 DATA\2015\150129\15012974.D\15012974

5

LCS/MB BATCH: MS/MSD BATCH:

150129B23A

SAMPLE VOLUME / WEIGHT:

DEFAULT: 500.00 ml / ACTUAL: 500.00 ml

FINAL VOLUME / WEIGHT:

DEFAULT: 5.00 ml / ACTUAL: 2.50 ml

UNITS:

ug/L

ADJUSTMENT RATIO TO PF:

0.50

COMMENT:

Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are

qualified with a "J" flag. TPH as Diesel is quantified in the carbon range C10-C28.

COMPOUND TPH as Diesel INI. CONC DF

6540

CLIENT SAMPLE NUMBER: ES120X

1.00

CONC 32.7

DL 11

LOD 12

QUAL LOQ

b

25

Area Percent Report

Data File Name ; W:\GC_45\GC 45 DATA\2015\150129\15012974.D

Page Number : 1

Operator : Vial Number : Vial 74

Instrument : GC 45 Injection Number : 1
Sample Name : 15-01-1715-5 Sequence Line : 74

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 30 Jan 15 11:24 am

Report Created on: 02 Feb 15 10:24 am Analysis Method: 8015B.MTH

Software Revision: Rev. B.03.02 [341] Copyright @ Agilent Technologies

Sig. 1 in $W:\GC_45\GC 45\DATA\2015\150129\->$

Pk	Ret Time	Area	Height	Peak	Width	Response %
; no war any		Fire will and two time are not time the time and and part are uni-		*** *** ***		
1.	2.102	0.19	0	BV	0.046	0.028
2	2.184	0,54	0	VV	0.027	0.078
3	2.237	3.13	1	VV	0.043	0.455
4	2.361	1.20	1	VV	0.033	0.174
5	2.426	2,25	1	VV	0.034	0.326
6	2.518	4.19	1	VV	0.055	0.609
7	2.635	7.01	1	VV	0.079	1.018
8	2.769	13.33	3	VV	0.065	1.937
9	2.900	17,13	3	VV	0.063	2.488
10	2.940	7.71	3	VV	0.038	1.120
11	3.006	4,98	2	VV	0.036	0.724
12	3.056	3.97	2	VV	0.032	0.577
13	3.090	3.99	2	VV	0.030	0.580
1.4	3.141	14.00	2	VV	0.101	2.034
15	3.363	15,19	2	VV	0.086	2.207
16	3.497	2.40	1	VV	0.036	0.349
17	3.591	5,12	1	VV	0.066	0.744
18	3.647	3.56	1	VV	0.055	0.517
19	3,728	4.11	1	VV	0.059	0.598
20	3,862	2.21	1	VV	0.038	0.322
21	3,934	2.36	0	VV	0.059	0.343
22	4.030	3.98	1	VB	0.042	0.578
23	5.327	565.69	292	VV	0.032	82.193

Total area ≈ 688.24

Area Percent Report

Data File Name : W:\GC_45\GC 45 DATA\2015\150129\15012974.D

Page Number : 2

Operator : Vial Number : Vial 74

Instrument : GC 45 Injection Number : 1 Sample Name : 15-01-1715-5 Sequence Line : 74

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 30 Jan 15 11:24 am

Report Created on: 02 Feb 15 10:24 am Analysis Method : 8015B.MTH

Software Revision: Rev. B.03.02 [341] Copyright © Agilent Technologies

RAW DATA SHEET FOR METHOD: EPA 8015B (M)

WORK ORDER:

099-15-516

INSTRUMENT:

GC 45

EXTRACTION:

EPA 3510C

D/T EXTRACTED: 2015-01-29 00:00

ANALYZED BY:

D/T ANALYZED:

2015-01-30 05:03

682

LOQ

25

REVIEWED BY: D/T REVIEWED:

DATA FILE:

W:\GC 45\GC 45 DATA\2015\150129\15012952.D\15012952

MB

UNITS:

CLIENT SAMPLE NUMBER: Method Blank

LCS/MB BATCH: MS/MSD BATCH: 150129B23A

ug/L

SAMPLE VOLUME / WEIGHT:

DEFAULT: 500.00 ml / ACTUAL: 500.00 ml

FINAL VOLUME / WEIGHT:

DEFAULT: 5.00 ml / ACTUAL: 2.50 ml

ADJUSTMENT RATIO TO PF:

0.50

COMMENT:

INI. CONC DF

0.000

1.00

CONC ND

DL 11

LOD

12

QUAL

COMPOUND

TPH as Diesel

Area Percent Report

ata File Name : W:\GC_45\GC 45 DATA\2015\150129\15012952.D

age Number : 2

perator :

nstrument

ample Name

: GC 45

Vial Number : Vial 52

Injection Number: 1

: MB 15012923/24

Sequence Line : 52

Instrument Method: C:\CHEM32\1\METHODS\

cquired on : 30 Jan 15 05:03 am

eport Created on: 30 Jan 15 07:35 pm

Analysis Method : 8015B.MTH

oftware Revision: Rev. B.03.02 [341] Copyright © Agilent Technologies

CONTINUING CALIBRATION VERIFICATION QUALITY CONTROL SHEET FOR METHOD: EPA 8015B (M)

ANALYZED BY: 682 <u>D/T ANALYZED:</u>		CCV CONC CCV %D CL STATUS	-11 0-15 PASS
		AMOUNT	AND THE PROPERTY OF THE PROPER
	2950	CCV RF	0.021
	12950.D\1501;	AVG RF	0.019
	\150129\150	MIN RF	0.00
361-6279	W:\GC_45\GC 45 DATA\2015\150129\15012950.D\15012950	CALIB MODEL	C Avg Resp
099-15-515-3 1501191007 150129A127 GC 45	W:\GC_45\@	COMP TYPE	O
CCV WORK ORDER: 099-15-515-361-6279 BATCH ID: 1501191007 CCV: 150129A127 INSTRUMENT: GC 45	DATA FILE:	COMPOUND NAME	TPH as Diesel

MIN RF: Method Specified Minimum Response Factor

Area Percent Report

ata File Name : W:\GC_45\GC 45 DATA\2015\150129\15012950.D

: D400 C28 50 L012815D

age Number : 4

ample Name

perator : GC 45

Vial Number : Vial 50

Injection Number : 1

Sequence Line : 50

Instrument Method: C:\CHEM32\1\METHODS\ -=

cquired on : 30 Jan 15 04:28 am

eport Created on: 30 Jan 15 07:35 pm

Analysis Method : 8015B.MTH

oftware Revision: Rev. B.03.02 [341] Copyright © Agilent Technologies

Calscience

WORK ORDER NUMBER: 15-01-1810

The difference is service

AIR SOL WATER MARINE CHEMISTRY

Analytical Report For

Client: Environmental Science International, Inc.

Client Project Name: Red Hill LTM 112066

Attention: Jeff Hattemer

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Temper

Approved for release on 02/05/2015 by: Terri Chang Project Manager

ResultLink

Email your PM

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

744h Francis Ver Gurden Gross (A.9754), 1437 - TEL 7748 2005-2014 - 742 7744 894-759) - www.calesteine.com

NELAP DI COURCA : ACLASS DODELAP ID AGE 1004 (SOULCITIOS 2005) I OSDIACID 10:00 I SCAQNID DI RICADES

Calscience

Contents

Client Project Name:	Red Hill LTM 112066
Mork Order Number:	15-01-1810

1	Work Order Narrative	3
2	Client Sample Data	4
	2.1 EPA 8015B (M) TPH Diesel (Aqueous)	4 5
	2.2 EPA 6020 ICP/MS Metals (Aqueous)	5 6
	2.4 GC/MS GRO/EPA 8260B Volatile Organics (Aqueous).	10
3	Quality Control Sample Data	20
	3.1 MS/MSD	20
	3.2 PDS/PDSD	25
	3.3 LCS/LCSD	26
4	Sample Analysis Summary	31
5	Glossary of Terms and Qualifiers	32
6	Chain-of-Custody/Sample Receipt Form	33

Work Order Narrative

Work Order: 15-01-1810 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 01/29/15. They were assigned to Work Order 15-01-1810.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Analytical Report

Date Received: 01/29/15 Environmental Science International, Inc. Work Order: 354 Uluniu Street, Suite 304 15-01-1810 Preparation: **EPA 3510C** Kailua, HI 96734-2500 Method: EPA 8015B (M) Units: ug/L Page 1 of 1 Project: Red Hill LTM 112066

Client Sample Number	Lab Sample Number	Date/Time N Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES126	15-01-1810-2-K	01/28/15 A 10:35	Aqueous	GC 45	02/02/15	02/03/15 03:03	150202B09
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >= to the	e MDL (DL	.) but < RL (LO	Q), if found, a	re qualified with a	a "J" flag.
- TPH as Diesel is quant	fied in the carbon rang	ge C10-C28.					
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	<u>LC</u>	<u>Q</u>	<u>DF</u>	Qualifiers
TPH as Diesel	1100	2.9	10	25		1.00	HD
Surrogate	<u>Rec. (%)</u>	Control Limits	s Qualif	<u>iers</u>			
n-Octacosane	70	51-141					

ES127		15-01-1810-3-	01/28/15 11:30	Aqueous GC 45	02/02/15	02/03/15 03:24	150202B09
Comment(s):	- Results were evaluated	to the MDL (DL), conc	entrations >=	to the MDL (DL) but < R	L (LOQ), if found,	are qualified with	a "J" flag.
	- TPH as Diesel is quantif	ied in the carbon rang	e C10-C28.				
<u>Parameter</u>		Result	<u>DL</u>	LOD	LOQ	<u>DF</u>	Qualifiers
TPH as Diesel		1700	2.9	10	25	1.00	HD

Surrogate	Rec. (%)	Control Limits	Qualifiers
n-Octacosane	93	51-141	

ES123	15)1/28/15 Aq)9:30	ueous GC 45	02/02/15	02/03/15 03:44	150202B09
Comment(s):	- Results were evaluated to the	MDL (DL), concen	trations >= to the I	MDL (DL) but < RI	(LOQ), if found, a	are qualified with a	a "J" flag.
	- TPH as Diesel is quantified in	the carbon range (C10-C28.				
<u>Parameter</u>		Result	<u>DL</u>	<u>LOD</u>	LOQ	<u>DF</u>	<u>Qualifiers</u>
TPH as Diesel		39	2.9	10	25	1.00	HD
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>			
n-Octacosane		64	51-141				

Method Blank	099-15-(516-238 N/A	Aque	ous GC 45	02/02/15	02/03/15 00:43	150202B09
Comment(s):	- Results were evaluated to the MDL	(DL), concentrat	tions >= to the Mi	DL (DL) but < RL ((LOQ), if found, ar	e qualified with a	"J" flag.
<u>Parameter</u>	<u>R</u>	tesult	<u>DL</u>	LOD	LOQ	<u>DF</u>	Qualifiers
TPH as Diesel	<	10	2.9	10	25	1.00	U
<u>Surrogate</u>	<u>R</u>	tec. (%)	Control Limits	Qualifiers			
n-Octacosane	8	3	51-141				

U

Lead

Analytical Report

 Environmental Science International, Inc.
 Date Received:
 01/29/15

 354 Uluniu Street, Suite 304
 Work Order:
 15-01-1810

 Kailua, HI 96734-2500
 Preparation:
 EPA 3005A Filt.

 Method:
 EPA 6020

 Units:
 ug/L

 Project: Red Hill LTM 112066
 Page 1 of 1

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES126		15-01-1810-2-R	01/28/15 10:35	Aqueous	ICP/MS 04	02/03/15	02/03/15 20:52	150203LA3D
Comment(s):	- Results were evaluated	to the MDL (DL), cond	entrations >= t	to the MDL (DI) but < RL (LC	Q), if found, a	are qualified with	a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>DL</u>	<u>LOD</u>	<u>LC</u>	<u>)Q</u>	<u>DF</u>	<u>Qualifiers</u>

ES127	15-01-1810-3-J 01/28/15 Aqueous ICP/MS 04 02/03/15 02/03/15 150203LA3D 11:30 20:54
Comment(s):	- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.200

0.500

1.00

	 _ (/,		(,	(,,		
<u>Parameter</u>	Result	<u>DL</u>	LOD	LOQ	DF	Qualifiers
Lead	<0.200	0.0898	0.200	0.500	1.00	U

0.0898

< 0.200

			01/28/15 09:30	Aqueous ICP/	MS 04 02/03/	15 02/03/ 20:56	15 150203LA3D
Comment(s):	- Results were evaluated to t	ne MDL (DL), conce	entrations >= to t	he MDL (DL) but	< RL (LOQ), if four	nd, are qualified	with a "J" flag.
<u>Parameter</u>		Result	<u>DL</u>	LOD	LOQ	<u>DF</u>	Qualifiers
Lead		<0.200	0.0898	0.200	0.500	1.00	U

Method Blank	099-14-497-11	8 N/A	Aqueous ICP/MS	04 02/03/15	02/03/15 20:40	150203LA3D
Comment(s):	- Results were evaluated to the MDL (DL),	concentrations >=	to the MDL (DL) but < R	L (LOQ), if found	, are qualified with	a "J" flag.
<u>Parameter</u>	Result	<u>DL</u>	<u>LOD</u>	LOQ	<u>DF</u>	<u>Qualifiers</u>
Lead	<0.200	0.0898	0.200	0.500	1.00	U

Environmental Science International, Inc.

Date Received:

354 Uluniu Street, Suite 304 Work O

Kailua, HI 96734-2500

Work Order: Preparation:

Method: Units: 15-01-1810 EPA 3510C

EPA 8270C SIM PAHs

01/29/15

ug/L

Project: Red Hill LTM 112066

Page 1 of 4

	0130L19
10:35 22:48	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flat	ag.
Parameter Result DL LOD LOQ DF Qua	<u>lifiers</u>
2-Methylnaphthalene 7.6 0.046 0.050 0.20 1.00	
Acenaphthylene <0.050 0.044 0.050 0.20 1.00 U	
Acenaphthene 0.59 0.027 0.050 0.20 1.00	
Fluorene 0.30 0.042 0.050 0.20 1.00	
Phenanthrene <0.050 0.027 0.050 0.20 1.00 U	
Anthracene <0.050 0.029 0.050 0.20 1.00 U	
Fluoranthene <0.050 0.046 0.050 0.20 1.00 U	
Pyrene <0.050 0.020 0.050 0.20 1.00 U	
Benzo (a) Anthracene <0.050 0.032 0.050 0.20 1.00 U	
Chrysene <0.050 0.025 0.050 0.20 1.00 U	
Benzo (k) Fluoranthene <0.050 0.031 0.050 0.20 1.00 U	
Benzo (b) Fluoranthene <0.050 0.017 0.050 0.20 1.00 U	
Benzo (a) Pyrene <0.050 0.022 0.050 0.20 1.00 U	
Indeno (1,2,3-c,d) Pyrene <0.050 0.021 0.050 0.20 1.00 U	
Dibenz (a,h) Anthracene <0.050 0.047 0.050 0.20 1.00 U	
Benzo (g,h,i) Perylene <0.099 0.081 0.099 0.20 1.00 U	
Surrogate Rec. (%) Control Limits Qualifiers	
Nitrobenzene-d5 90 28-139	
2-Fluorobiphenyl 68 33-144	
p-Terphenyl-d14 66 23-160	

ES126 15		01/28/15 Aqu 10:35	ueous GC/M	S AAA 01/30/15	02/03/15 16:18	150130L19			
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Result	<u>DL</u>	LOD	LOQ	<u>DF</u>	Qualifiers			
Naphthalene	90	0.34	0.50	2.0	10.0				
1-Methylnaphthalene	34	0.51	0.99	2.0	10.0				
Surrogate	Rec. (%)	Control Limits	Qualifiers						
Nitrobenzene-d5	0	28-139	1,2,6						
2-Fluorobiphenyl	64	33-144							
p-Terphenyl-d14	69	23-160							

Environmental Science International, Inc.

Date Received:

01/29/15

354 Uluniu Street, Suite 304

Work Order:

15-01-1810

Kailua, HI 96734-2500 Preparation: EPA 3510C Method: EPA 8270C SIM PAHs

Units: ug/L

Project: Red Hill LTM 112066 Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
ES127	15-01-1810-3-H	01/28/15 11:30	Aqueous	GC/MS AAA	01/30/15	02/02/15 23:08	150130L19	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOC	<u>3</u>	<u>DF</u>	<u>Qualifiers</u>	
2-Methylnaphthalene	2.7	0.046	0.049	0.20)	1.00		
Acenaphthylene	<0.049	0.044	0.049	0.20)	1.00	U	
Acenaphthene	0.55	0.026	0.049	0.20)	1.00		
Fluorene	0.22	0.042	0.049	0.20)	1.00		
Phenanthrene	<0.049	0.027	0.049	0.20)	1.00	U	
Anthracene	<0.049	0.028	0.049	0.20)	1.00	U	
Fluoranthene	<0.049	0.046	0.049	0.20)	1.00	U	
Pyrene	<0.049	0.020	0.049	0.20)	1.00	U	
Benzo (a) Anthracene	<0.049	0.032	0.049	0.20)	1.00	U	
Chrysene	<0.049	0.024	0.049	0.20)	1.00	U	
Benzo (k) Fluoranthene	<0.049	0.030	0.049	0.20)	1.00	U	
Benzo (b) Fluoranthene	<0.049	0.017	0.049	0.20)	1.00	U	
Benzo (a) Pyrene	<0.049	0.022	0.049	0.20)	1.00	U	
Indeno (1,2,3-c,d) Pyrene	<0.049	0.021	0.049	0.20)	1.00	U	
Dibenz (a,h) Anthracene	<0.049	0.047	0.049	0.20)	1.00	U	
Benzo (g,h,i) Perylene	<0.098	0.080	0.098	0.20)	1.00	U	
Surrogate	Rec. (%)	Control Limi	its Qualific	ers				
Nitrobenzene-d5	61	28-139						
2-Fluorobiphenyl	58	33-144						
p-Terphenyl-d14	61	23-160						

ES127	15-01-1810-3-H	01/28/15 Ac 11:30	queous GC/N	IS AAA 01/30/1	5 02/03/15 16:38	150130L19			
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Result	<u>DL</u>	LOD	LOQ	<u>DF</u>	<u>Qualifiers</u>			
Naphthalene	63	0.33	0.49	2.0	10.0				
1-Methylnaphthalene	25	0.51	0.98	2.0	10.0				
Surrogate	Rec. (%)	Control Limits	Qualifiers						
Nitrobenzene-d5	0	28-139	1,2,6						
2-Fluorobiphenyl	50	33-144							
p-Terphenyl-d14	56	23-160							

Environmental Science International, Inc.

Date Received:

354 Uluniu Street, Suite 304

Work Order:

Work Order: Preparation:

15-01-1810 EPA 3510C

01/29/15

Kailua, HI 96734-2500 Preparat

Method:

EPA 8270C SIM PAHs

Units:

ug/L

Project: Red Hill LTM 112066

Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time N Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES123	15-01-1810-4-J	01/28/15 A 09:30	Aqueous	GC/MS AAA	01/30/15	02/02/15 23:28	150130L19
Comment(s): - Results were evaluate	ed to the MDL (DL), con	centrations >= to th	ne MDL (DL)) but < RL (LOC	(a), if found, a	are qualified with	a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOC	<u>S</u>	<u>DF</u>	Qualifiers
Naphthalene	<0.048	0.033	0.048	0.19	1	1.00	U
2-Methylnaphthalene	<0.048	0.045	0.048	0.19	1	1.00	U
1-Methylnaphthalene	<0.097	0.050	0.097	0.19	1	1.00	U
Acenaphthylene	<0.048	0.043	0.048	0.19)	1.00	U
Acenaphthene	<0.048	0.026	0.048	0.19)	1.00	U
Fluorene	<0.048	0.041	0.048	0.19)	1.00	U
Phenanthrene	<0.048	0.026	0.048	0.19)	1.00	U
Anthracene	<0.048	0.028	0.048	0.19)	1.00	U
Fluoranthene	<0.048	0.045	0.048	0.19)	1.00	U
Pyrene	<0.048	0.020	0.048	0.19)	1.00	U
Benzo (a) Anthracene	<0.048	0.032	0.048	0.19)	1.00	U
Chrysene	<0.048	0.024	0.048	0.19)	1.00	U
Benzo (k) Fluoranthene	<0.048	0.030	0.048	0.19)	1.00	U
Benzo (b) Fluoranthene	<0.048	0.017	0.048	0.19)	1.00	U
Benzo (a) Pyrene	<0.048	0.022	0.048	0.19)	1.00	U
Indeno (1,2,3-c,d) Pyrene	<0.048	0.020	0.048	0.19	1	1.00	U
Dibenz (a,h) Anthracene	<0.048	0.046	0.048	0.19	ı	1.00	U
Benzo (g,h,i) Perylene	<0.097	0.079	0.097	0.19)	1.00	U
Surrogate	Rec. (%)	Control Limit	ts Qualifi	<u>ers</u>			
Nitrobenzene-d5	50	28-139					
2-Fluorobiphenyl	55	33-144					
p-Terphenyl-d14	67	23-160					

Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500 Date Received:

01/29/15

Work Order: Preparation:

15-01-1810 EPA 3510C

Method:

EPA 8270C SIM PAHs

Units:

ug/L

Project: Red Hill LTM 112066

Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time I Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-148-80	N/A	Aqueous	GC/MS AAA	01/30/15	02/02/15 21:28	150130L19
Comment(s): - Results were evaluated	to the MDL (DL), cor	centrations >= to th	he MDL (DL) but < RL (LOQ), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	<u>LOD</u>	LOC	<u>)</u>	<u>DF</u>	<u>Qualifiers</u>
Naphthalene	<0.050	0.034	0.050	0.20		1.00	U
2-Methylnaphthalene	<0.050	0.046	0.050	0.20		1.00	U
1-Methylnaphthalene	<0.10	0.052	0.10	0.20		1.00	U
Acenaphthylene	<0.050	0.045	0.050	0.20		1.00	U
Acenaphthene	<0.050	0.027	0.050	0.20		1.00	U
Fluorene	<0.050	0.043	0.050	0.20		1.00	U
Phenanthrene	<0.050	0.027	0.050	0.20		1.00	U
Anthracene	<0.050	0.029	0.050	0.20		1.00	U
Fluoranthene	<0.050	0.047	0.050	0.20		1.00	U
Pyrene	<0.050	0.020	0.050	0.20		1.00	U
Benzo (a) Anthracene	<0.050	0.033	0.050	0.20		1.00	U
Chrysene	<0.050	0.025	0.050	0.20		1.00	U
Benzo (k) Fluoranthene	<0.050	0.031	0.050	0.20		1.00	U
Benzo (b) Fluoranthene	<0.050	0.018	0.050	0.20		1.00	U
Benzo (a) Pyrene	<0.050	0.022	0.050	0.20		1.00	U
Indeno (1,2,3-c,d) Pyrene	<0.050	0.021	0.050	0.20		1.00	U
Dibenz (a,h) Anthracene	<0.050	0.048	0.050	0.20		1.00	U
Benzo (g,h,i) Perylene	<0.10	0.082	0.10	0.20		1.00	U
Surrogate	Rec. (%)	Control Limit	ts Qualifi	ers			
Nitrobenzene-d5	69	28-139					
2-Fluorobiphenyl	67	33-144					
p-Terphenyl-d14	69	23-160					
L L							

Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order: Preparation:

01/29/15 15-01-1810

Method:

EPA 5030C

GC/MS / EPA 8260B

Units:

ug/L Page 1 of 10

Project: Red Hill LTM 112066

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Date/Time Prepared Analyzed	QC Batch ID
ESTRIP	15-01-1810-1-A	01/28/15 09:00	Aqueous	GC/MS OO	01/31/15 01/31/15 14:11	150131L001
Comment(s): - Results were evaluated to	o the MDL (DL), con	centrations >= t	o the MDL (DI	L) but < RL (LOC	Ω), if found, are qualified with	a "J" flag.
<u>Parameter</u>	Result	<u>DL</u>	LOD	LOC	<u>DF</u>	Qualifiers
Acetone	<10	6.0	10	20	1.00	U,IJ
Benzene	<0.50	0.14	0.50	1.0	1.00	U
Bromodichloromethane	<0.50	0.21	0.50	5.0	1.00	U
Bromoform	<1.0	0.50	1.0	10	1.00	U
Bromomethane	<5.0	3.9	5.0	20	1.00	U,IH
2-Butanone	<5.0	2.2	5.0	10	1.00	U
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1.00	U
Chlorobenzene	<0.50	0.17	0.50	5.0	1.00	U
Chloroethane	<5.0	2.3	5.0	10	1.00	U
Chloroform	<0.50	0.46	0.50	5.0	1.00	U
Chloromethane	<2.0	1.8	2.0	10	1.00	U
Dibromochloromethane	<0.50	0.25	0.50	1.0	1.00	U
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1.00	U
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1.00	U
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1.00	U
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1.00	U
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1.00	U
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1.00	U
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1.00	U
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1.00	U
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1.00	U
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1.00	U
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
Ethylbenzene	<0.50	0.14	0.50	1.0	1.00	U
Methylene Chloride	<1.0	0.64	1.0	5.0	1.00	U
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1.00	U
Styrene	<0.50	0.17	0.50	1.0	1.00	U
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1.00	U
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1.00	U
Tetrachloroethene	<0.50	0.39	0.50	5.0	1.00	U
Toluene	<0.50	0.24	0.50	1.0	1.00	U
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1.00	U
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1.00	U
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1.00	U

Environmental Science International, Inc. 354 Uluniu Street, Suite 304

Date Received: Work Order: Preparation: Method: 01/29/15 15-01-1810 EPA 5030C

Units:

GC/MS / EPA 8260B ug/L

Qualifiers
U
U
U
U
U
U
U
U
U
U
U
U
U
U

Page 2 of 10

Project:	Red	Hill	LTM	112066
Parameter				

Kailua, HI 96734-2500

1,4-Bromofluorobenzene

<u>Parameter</u>	Result	<u>DL</u>	LOD	LOQ	<u>DF</u>
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1.00
Trichloroethene	<0.50	0.37	0.50	1.0	1.00
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1.00
Vinyl Chloride	<0.50	0.30	0.50	1.0	1.00
p/m-Xylene	<1.0	0.30	1.0	10	1.00
o-Xylene	<0.50	0.23	0.50	1.0	1.00
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1.00
Gasoline Range Organics	<30	26	30	50	1.00
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
Dibromofluoromethane	104	80-126			
1,2-Dichloroethane-d4	105	80-134			
Toluene-d8	97	80-120			
Toluene-d8-TPPH	98	88-112			

80-120

90

Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500 Date Received:

01/29/15 15-01-1810

Work Order: Preparation:

EPA 5030C

Method:

GC/MS / EPA 8260B

Units:

ug/L

Project: Red Hill LTM 112066

Page 3 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Date/Time Prepared Analyzed	e QC Batch II
ES126	15-01-1810-2-A	01/28/15 10:35	Aqueous	GC/MS OO	01/31/15 01/31/15 14:38	150131L00
Comment(s): - Results were evalu	ated to the MDL (DL), con	centrations >= t	o the MDL (DI	_) but < RL (LOC	Q), if found, are qualified wit	h a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOC	<u>DF</u>	Qualifiers
Acetone	<10	6.0	10	20	1.00	U,IJ
Benzene	<0.50	0.14	0.50	1.0	1.00	U
Bromodichloromethane	<0.50	0.21	0.50	5.0	1.00	U
Bromoform	<1.0	0.50	1.0	10	1.00	U
Bromomethane	<5.0	3.9	5.0	20	1.00	U,IH
2-Butanone	<5.0	2.2	5.0	10	1.00	U
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1.00	U
Chlorobenzene	<0.50	0.17	0.50	5.0	1.00	U
Chloroethane	<5.0	2.3	5.0	10	1.00	U
Chloroform	<0.50	0.46	0.50	5.0	1.00	U
Chloromethane	<2.0	1.8	2.0	10	1.00	U
Dibromochloromethane	<0.50	0.25	0.50	1.0	1.00	U
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1.00	U
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1.00	U
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1.00	U
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1.00	U
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1.00	U
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1.00	U
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1.00	U
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1.00	U
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1.00	U
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1.00	U
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
Ethylbenzene	0.16	0.14	0.50	1.0	1.00	J
Methylene Chloride	<1.0	0.64	1.0	5.0	1.00	U
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1.00	U
Styrene	<0.50	0.17	0.50	1.0	1.00	U
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1.00	U
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1.00	U
Tetrachloroethene	<0.50	0.39	0.50	5.0	1.00	U
Toluene	<0.50	0.24	0.50	1.0	1.00	U
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1.00	U
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1.00	U
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1.00	U

Environmental Science International, Inc. 354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received: Work Order:

Preparation:

Method: Units: 01/29/15

15-01-1810 EPA 5030C

GC/MS / EPA 8260B

ug/L

Project: Red Hill LTM 112066

Page 4 of 10

-						
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOQ	<u>DF</u>	Qualifiers
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1.00	U
Trichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1.00	U
Vinyl Chloride	<0.50	0.30	0.50	1.0	1.00	U
p/m-Xylene	<1.0	0.30	1.0	10	1.00	U
o-Xylene	0.35	0.23	0.50	1.0	1.00	J
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1.00	U
Gasoline Range Organics	54	26	30	50	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers			
Dibromofluoromethane	104	80-126				
1,2-Dichloroethane-d4	107	80-134				
Toluene-d8	97	80-120				
Toluene-d8-TPPH	98	88-112				
1,4-Bromofluorobenzene	93	80-120				

Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received:

01/29/15 15-01-1810

Work Order: Preparation:

EPA 5030C

Method:

GC/MS / EPA 8260B

Units:

ug/L

Project: Red Hill LTM 112066

Page 5 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Date/Time Prepared Analyzed	QC Batch ID
ES127	15-01-1810-3-A	01/28/15 11:30	Aqueous	GC/MS OO	01/31/15 01/31/15 16:52	150131L001
Comment(s): - Results were evaluated t	o the MDL (DL), con	centrations >= t	o the MDL (DI	L) but < RL (LOC	ι), if found, are qualified with	n a "J" flag.
<u>Parameter</u>	Result	<u>DL</u>	LOD	LOC	<u>DF</u>	<u>Qualifiers</u>
Acetone	<10	6.0	10	20	1.00	U,IJ
Benzene	<0.50	0.14	0.50	1.0	1.00	U
Bromodichloromethane	<0.50	0.21	0.50	5.0	1.00	U
Bromoform	<1.0	0.50	1.0	10	1.00	U
Bromomethane	<5.0	3.9	5.0	20	1.00	U,IH
2-Butanone	<5.0	2.2	5.0	10	1.00	U
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1.00	U
Chlorobenzene	<0.50	0.17	0.50	5.0	1.00	U
Chloroethane	<5.0	2.3	5.0	10	1.00	U
Chloroform	<0.50	0.46	0.50	5.0	1.00	U
Chloromethane	<2.0	1.8	2.0	10	1.00	U
Dibromochloromethane	<0.50	0.25	0.50	1.0	1.00	U
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1.00	U
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1.00	U
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1.00	U
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1.00	U
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1.00	U
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1.00	U
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1.00	U
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1.00	U
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1.00	U
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1.00	U
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
Ethylbenzene	0.17	0.14	0.50	1.0	1.00	J
Methylene Chloride	<1.0	0.64	1.0	5.0	1.00	U
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1.00	U
Styrene	<0.50	0.17	0.50	1.0	1.00	U
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1.00	U
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1.00	U
Tetrachloroethene	<0.50	0.39	0.50	5.0	1.00	U
Toluene	<0.50	0.24	0.50	1.0	1.00	U
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1.00	U
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1.00	U
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1.00	U

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order: Preparation: Method:

01/29/15 15-01-1810 EPA 5030C

Units:

GC/MS / EPA 8260B ug/L

Page 6 of 10

Project: Red Hill LTM 112066

<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOQ	<u>DF</u>	Qualifiers
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1.00	U
Trichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1.00	U
Vinyl Chloride	<0.50	0.30	0.50	1.0	1.00	U
p/m-Xylene	<1.0	0.30	1.0	10	1.00	U
o-Xylene	0.35	0.23	0.50	1.0	1.00	J
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1.00	U
Gasoline Range Organics	59	26	30	50	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers			
Dibromofluoromethane	102	80-126				
1,2-Dichloroethane-d4	106	80-134				
Toluene-d8	96	80-120				

Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received:

01/29/15 15-01-1810

Work Order: Preparation:

EPA 5030C

Method:

GC/MS / EPA 8260B

Units:

ug/L

Project: Red Hill LTM 112066

Page 7 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Date/Time Prepared Analyzed	QC Batch II
ES123	15-01-1810-4-A	01/28/15 09:30	Aqueous	GC/MS OO	01/31/15 01/31/15 17:19	150131L00
Comment(s): - Results were evalu	ated to the MDL (DL), con	centrations >= t	o the MDL (DI	_) but < RL (LOC	Q), if found, are qualified with	n a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOC	<u>DF</u>	Qualifiers
Acetone	<10	6.0	10	20	1.00	U,IJ
Benzene	<0.50	0.14	0.50	1.0	1.00	U
Bromodichloromethane	<0.50	0.21	0.50	5.0	1.00	U
Bromoform	<1.0	0.50	1.0	10	1.00	U
Bromomethane	<5.0	3.9	5.0	20	1.00	U,IH
2-Butanone	<5.0	2.2	5.0	10	1.00	U
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1.00	U
Chlorobenzene	<0.50	0.17	0.50	5.0	1.00	U
Chloroethane	<5.0	2.3	5.0	10	1.00	U
Chloroform	<0.50	0.46	0.50	5.0	1.00	U
Chloromethane	<2.0	1.8	2.0	10	1.00	U
Dibromochloromethane	<0.50	0.25	0.50	1.0	1.00	U
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1.00	U
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1.00	U
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1.00	U
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1.00	U
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1.00	U
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1.00	U
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1.00	U
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1.00	U
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1.00	U
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1.00	U
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
Ethylbenzene	<0.50	0.14	0.50	1.0	1.00	U
Methylene Chloride	<1.0	0.64	1.0	5.0	1.00	U
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1.00	U
Styrene	<0.50	0.17	0.50	1.0	1.00	U
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1.00	U
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1.00	U
Tetrachloroethene	<0.50	0.39	0.50	5.0	1.00	U
Toluene	<0.50	0.24	0.50	1.0	1.00	U
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1.00	U
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1.00	U
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1.00	U

Environmental Science International, Inc. 354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

1,4-Bromofluorobenzene

Date Received:

Work Order:

Preparation:

Method: Units: 01/29/15 15-01-1810

EPA 5030C

GC/MS / EPA 8260B

ug/L

Project: Red Hill LTM 112066

Page 8 of 10

<u>Parameter</u>	Result	<u>DL</u>	LOD	LOQ	<u>DF</u>	Qualifiers
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1.00	U
Trichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1.00	U
Vinyl Chloride	<0.50	0.30	0.50	1.0	1.00	U
p/m-Xylene	<1.0	0.30	1.0	10	1.00	U
o-Xylene	<0.50	0.23	0.50	1.0	1.00	U
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1.00	U
Gasoline Range Organics	<30	26	30	50	1.00	U
Surrogate	Rec. (%)	Control Limits	Qualifiers			
Dibromofluoromethane	100	80-126				
1,2-Dichloroethane-d4	103	80-134				
Toluene-d8	96	80-120				
Toluene-d8-TPPH	97	88-112				

80-120

93

Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received:

01/29/15 15-01-1810

Work Order: Preparation:

EPA 5030C

Method:

GC/MS / EPA 8260B

Units:

ug/L

Project: Red Hill LTM 112066

Page 9 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Date/Time Prepared Analyzed	QC Batch II
Method Blank	099-13-057-76	N/A	Aqueous	GC/MS 00	01/31/15 01/31/15 13:10	150131L00
Comment(s): - Results were evalu	ated to the MDL (DL), cor	ncentrations >= t	o the MDL (DI	_) but < RL (LOC	Ω), if found, are qualified with	ı a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>DL</u>	LOD	LOC	<u>DF</u>	Qualifiers
Acetone	<10	6.0	10	20	1.00	U
Benzene	<0.50	0.14	0.50	1.0	1.00	U
3romodichloromethane	<0.50	0.21	0.50	5.0	1.00	U
Bromoform	<1.0	0.50	1.0	10	1.00	U
3romomethane	<5.0	3.9	5.0	20	1.00	U
2-Butanone	<5.0	2.2	5.0	10	1.00	U
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1.00	U
Chlorobenzene	<0.50	0.17	0.50	5.0	1.00	U
Chloroethane	<5.0	2.3	5.0	10	1.00	U
Chloroform	<0.50	0.46	0.50	5.0	1.00	U
Chloromethane	<2.0	1.8	2.0	10	1.00	U
Dibromochloromethane	<0.50	0.25	0.50	1.0	1.00	U
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1.00	U
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1.00	U
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1.00	U
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1.00	U
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1.00	U
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1.00	U
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1.00	U
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1.00	U
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1.00	U
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1.00	U
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1.00	U
Ethylbenzene	<0.50	0.14	0.50	1.0	1.00	U
Methylene Chloride	<1.0	0.64	1.0	5.0	1.00	U
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1.00	U
Styrene	<0.50	0.17	0.50	1.0	1.00	U
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1.00	U
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1.00	U
Tetrachloroethene	<0.50	0.39	0.50	5.0	1.00	U
Toluene	<0.50	0.24	0.50	1.0	1.00	U
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1.00	U
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1.00	U
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1.00	U

Environmental Science International, Inc. 354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received:

Work Order:

Preparation:

Method:

Units:

EPA 5030C

GC/MS / EPA 8260B

ug/L

01/29/15

15-01-1810

Project: Red Hill LTM 112066

Page 10 of 10

<u>Parameter</u>	Result	<u>DL</u>	<u>LOD</u>	<u>LOQ</u>	<u>DF</u>	<u>Qualifiers</u>
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1.00	U
Trichloroethene	<0.50	0.37	0.50	1.0	1.00	U
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1.00	U
Vinyl Chloride	<0.50	0.30	0.50	1.0	1.00	U
p/m-Xylene	<1.0	0.30	1.0	10	1.00	U
o-Xylene	<0.50	0.23	0.50	1.0	1.00	U
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1.00	U
Gasoline Range Organics	<30	26	30	50	1.00	U
Surrogate	Rec. (%)	Control Limits	Qualifiers			
Dibromofluoromethane	102	80-126				
1,2-Dichloroethane-d4	103	80-134				
Toluene-d8	97	80-120				
Toluene-d8-TPPH	99	88-112				
1,4-Bromofluorobenzene	92	80-120				

 Environmental Science International, Inc.
 Date Received:
 01/29/15

 354 Uluniu Street, Suite 304
 Work Order:
 15-01-1810

 Kailua, HI 96734-2500
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Project: Red Hill LTM 112066
 Page 1 of 5

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
ES126	Sample		Aqueous	s GC	45	02/02/15	02/03/15	03:03	150202S09	
ES126	Matrix Spike		Aqueous	s GC	45	02/02/15	02/03/15	02:23	150202S09	
ES126	Matrix Spike Duplicate		Aqueous	s GC	45	02/02/15	02/03/15 02:43		150202S09	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	1101	2000	2835	87	2958	93	55-133	4	0-30	

Environmental Science International, Inc.

Date Received:

Work Order:

15-01-1810

Kailua, HI 96734-2500

Preparation:

Method:

EPA 3005A Filt.

EPA 6020

Project: Red Hill LTM 112066 Page 2 of 5

Quality Control Sample ID	Туре	Matrix	Instru	ment	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
ES126	Sample	Aqueou	s ICP/N	IS 04	02/03/15	02/03/15	20:52	150203SA3	
ES126	Matrix Spike	Aqueou	s ICP/N	IS 04	02/03/15	02/03/15	20:44	150203SA3	
ES126	Matrix Spike Dupli	cate Aqueou	s ICP/N	IS 04	02/03/15	02/03/15	20:46	150203SA3	
Parameter	<u>Sample Spi</u> <u>Conc. Add</u>		MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Lead	ND 100	.0 99.87	100	103.6	104	80-120	4	0-20	

Environmental Science International, Inc.

Date Received:

Work Order:

15-01-1810

Kailua, HI 96734-2500

Preparation:

Method:

EPA 8270C SIM PAHs

Project: Red Hill LTM 112066 Page 3 of 5

Quality Control Sample ID ES126	Type Sample	Matrix Aqueous		nstrument GC/MS AAA	Date Prepared 01/30/15	02/03/15	Date Analyzed MS/MSD Batch Number 02/03/15 16:18 150130S19A			
ES126	Matrix Spike				C/MS AAA	01/30/15	02/02/15 20:07 150130S19A			
ES126	Matrix Spike	Duplicate	Aqueous		C/MS AAA	01/30/15	02/02/15 20:28 150130S19A			
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	<u>MSD</u> %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Naphthalene	89.96	2.000	83.41	0	72.55	0	21-133	14	0-25	3
2-Methylnaphthalene	7.590	2.000	4.948	0	5.156	0	21-140	4	0-25	3
1-Methylnaphthalene	34.15	2.000	28.85	0	25.83	0	20-140	11	0-25	3
Acenaphthylene	ND	2.000	1.563	78	1.498	75	33-145	4	0-25	
Acenaphthene	0.5935	2.000	2.018	71	1.843	62	49-121	9	0-25	
Fluorene	0.2969	2.000	1.704	70	1.568	64	59-121	8	0-25	
Phenanthrene	ND	2.000	1.611	81	1.556	78	54-120	3	0-25	
Anthracene	ND	2.000	1.320	66	1.240	62	27-133	6	0-25	
Fluoranthene	ND	2.000	1.451	73	1.374	69	26-137	5	0-25	
Pyrene	ND	2.000	1.468	73	1.444	72	18-168	2	0-25	
Benzo (a) Anthracene	ND	2.000	1.409	70	1.328	66	33-143	6	0-25	
Chrysene	ND	2.000	1.471	74	1.401	70	17-168	5	0-25	
Benzo (k) Fluoranthene	ND	2.000	1.556	78	1.356	68	24-159	14	0-25	
Benzo (b) Fluoranthene	ND	2.000	1.200	60	1.070	54	24-159	11	0-25	
Benzo (a) Pyrene	ND	2.000	1.293	65	1.207	60	17-163	7	0-25	
Indeno (1,2,3-c,d) Pyrene	ND	2.000	1.330	66	1.261	63	10-171	5	0-25	
Dibenz (a,h) Anthracene	ND	2.000	1.381	69	1.271	64	10-219	8	0-25	
Benzo (g,h,i) Perylene	ND	2.000	1.264	63	1.348	67	10-227	6	0-25	

Environmental Science International, Inc.

Date Received:

Work Order:

15-01-1810

Kailua, HI 96734-2500

Preparation:

EPA 5030C

Method: GC/MS / EPA 8260B

Project: Red Hill LTM 112066 Page 4 of 5

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared	d Date Ana	lyzed	MS/MSD Ba	tch Number
ES126	Sample Matrix Spike		Aqueous Aqueous		GC/MS OO	01/31/15	01/31/15			
ES126					GC/MS OO	01/31/15	01/31/15	15:05	150131S00°	
ES126	Matrix Spike	Duplicate	Aqueous	3	GC/MS OO	01/31/15	01/31/15	15:31	150131S00°	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Red	MSD c. Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Acetone	ND	50.00	65.98	132	63.42	127	40-140	4	0-20	
Benzene	ND	50.00	43.74	87	43.62	87	80-120	0	0-20	
Bromodichloromethane	ND	50.00	44.53	89	44.71	89	75-120	0	0-20	
Bromoform	ND	50.00	43.49	87	44.63	89	70-130	3	0-20	
Bromomethane	ND	50.00	59.65	119	53.85	108	30-145	10	0-20	
2-Butanone	ND	50.00	53.01	106	51.20	102	30-150	3	0-20	
Carbon Tetrachloride	ND	50.00	40.25	80	40.78	82	65-140	1	0-20	
Chlorobenzene	ND	50.00	46.77	94	46.50	93	80-120	1	0-20	
Chloroethane	ND	50.00	39.98	80	41.50	83	60-135	4	0-20	
Chloroform	ND	50.00	45.37	91	45.16	90	65-135	0	0-20	
Chloromethane	ND	50.00	37.73	75	39.18	78	40-125	4	0-20	
Dibromochloromethane	ND	50.00	48.10	96	47.60	95	60-135	1	0-20	
1,2-Dibromo-3-Chloropropane	ND	50.00	40.53	81	39.34	79	50-130	3	0-20	
1,2-Dibromoethane	ND	50.00	49.12	98	48.98	98	80-120	0	0-20	
1,2-Dichlorobenzene	ND	50.00	47.05	94	46.53	93	70-120	1	0-20	
1,3-Dichlorobenzene	ND	50.00	46.08	92	45.62	91	75-125	1	0-20	
1,4-Dichlorobenzene	ND	50.00	46.22	92	45.85	92	75-125	1	0-20	
1,1-Dichloroethane	ND	50.00	42.14	84	42.19	84	70-135	0	0-20	
1,2-Dichloroethane	ND	50.00	50.52	101	49.45	99	70-130	2	0-20	
1,1-Dichloroethene	ND	50.00	39.86	80	40.36	81	70-130	1	0-20	
c-1,2-Dichloroethene	ND	50.00	44.04	88	43.78	88	70-125	1	0-20	
t-1,2-Dichloroethene	ND	50.00	39.54	79	39.99	80	60-140	1	0-20	
1,2-Dichloropropane	ND	50.00	43.81	88	43.85	88	75-125	0	0-20	
c-1,3-Dichloropropene	ND	50.00	43.26	87	43.00	86	70-130	1	0-20	
t-1,3-Dichloropropene	ND	50.00	40.98	82	41.61	83	55-140	2	0-20	
Ethylbenzene	ND	50.00	45.15	90	44.90	90	75-125	1	0-20	
Methylene Chloride	ND	50.00	41.05	82	41.07	82	55-140	0	0-20	
4-Methyl-2-Pentanone	ND	50.00	43.39	87	42.42	85	60-135	2	0-20	
Styrene	ND	50.00	44.39	89	43.61	87	65-135	2	0-20	
1,1,1,2-Tetrachloroethane	ND	50.00	44.95	90	45.50	91	80-130	1	0-20	
1,1,2,2-Tetrachloroethane	ND	50.00	41.23	82	41.67	83	65-130	1	0-20	
Tetrachloroethene	ND	50.00	55.26	111	54.04	108	45-150	2	0-20	
Toluene	ND	50.00	44.30	89	43.48	87	75-120	2	0-20	
1,2,4-Trichlorobenzene	ND	50.00	47.52	95	46.31	93	65-135	3	0-20	
1,1,1-Trichloroethane	ND	50.00	42.47	85	42.76	86	65-130	1	0-20	

GC/MS / EPA 8260B

01/29/15

Quality Control - Spike/Spike Duplicate

Date Received: Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Work Order: 15-01-1810 Preparation: EPA 5030C Kailua, HI 96734-2500

Project: Red Hill LTM 112066 Page 5 of 5

Method:

<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Hexachloro-1,3-Butadiene	ND	50.00	46.89	94	46.45	93	50-140	1	0-20	
1,1,2-Trichloroethane	ND	50.00	46.89	94	47.41	95	75-125	1	0-20	
Trichloroethene	ND	50.00	44.46	89	43.96	88	70-125	1	0-20	
1,2,3-Trichloropropane	ND	50.00	38.07	76	37.07	74	75-125	3	0-20	3
Vinyl Chloride	ND	50.00	40.78	82	41.96	84	50-145	3	0-20	
p/m-Xylene	ND	100.0	89.32	89	88.22	88	75-130	1	0-20	
o-Xylene	ND	50.00	44.60	89	44.47	89	80-120	0	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	41.69	83	42.71	85	65-125	2	0-20	

Quality Control - PDS

Environmental Science International, Inc.

Date Received:

Work Order:

15-01-1810

Kailua, HI 96734-2500

Preparation:

Method:

EPA 3005A Filt.

Method:

Project: Red Hill LTM 112066 Page 1 of 1

Quality Control Sample ID	Туре	M	//atrix	Instrument	Date Prepared Date		S/PDSD Batch nber
ES126	Sample	Δ	Aqueous	ICP/MS 04	02/03/15 00:00 02/03	3/15 20:52 150	203SA3
ES126	PDS	Д	Aqueous	ICP/MS 04	02/03/15 00:00 02/0:	3/15 20:48 150	203SA3
<u>Parameter</u>		Sample Conc.	Spike Added	PDS Conc	PDS %Rec.	%Rec. CL	<u>Qualifiers</u>
Lead		ND	100.0	98.15	98	75-125	

Quality Control - LCS/LCSD

 Environmental Science International, Inc.
 Date Received:
 01/29/15

 354 Uluniu Street, Suite 304
 Work Order:
 15-01-1810

 Kailua, HI 96734-2500
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Project: Red Hill LTM 112066
 Page 1 of 5

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared Date	Analyzed	LCS/LCSD B	atch Number
099-15-516-238	LCS	Aqı	ieous	GC 45	02/02/15	02/0	3/15 01:03	150202B09	
099-15-516-238	LCSD	Aqı	ieous	GC 45	02/02/15	02/0	3/15 01:23	150202B09	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	2000	1897	95	1893	95	60-132	0	0-11	

Quality Control - LCS

Environmental Science International, Inc. 354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Project: Red Hill LTM 112066

Date Received:

Work Order: Preparation:

Method:

01/29/15 15-01-1810

EPA 3005A Filt.

EPA 6020

Page 2 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed LCS I	Batch Number
099-14-497-118	LCS	Aqueous	ICP/MS 04	02/03/15	02/03/15 20:42 1502	03LA3D
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %Red	c. %Rec. CL	<u>Qualifiers</u>
Lead		100.0	96.03	96	80-120	

Quality Control - LCS

Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

1-Methylnaphthalene

Acenaphthylene

Acenaphthene

Phenanthrene

Anthracene

Pyrene

Chrysene

Fluoranthene

Benzo (a) Anthracene

Benzo (k) Fluoranthene

Benzo (b) Fluoranthene

Indeno (1,2,3-c,d) Pyrene

Dibenz (a,h) Anthracene

Benzo (g,h,i) Perylene

Benzo (a) Pyrene

Fluorene

Date Received:

01/29/15 15-01-1810

Work Order: Preparation:

EPA 3510C

Method:

1.528

1.458

1.547

1.454

1.536

1.262

1.595

1.784

1.585

1.722

1.970

1.389

1.473

1.508

1.577

1.351

76

73

77

73

77

63

80

89

79

86

98

69

74

75

79

68

20-140

33-145

55-121

59-121

54-120

27-133

26-137

45-129

33-143

17-168

24-159

24-159

17-163

25-175

25-175

25-157

EPA 8270C SIM PAHs

Project: Red Hill LTM 112	Page 3 of 5					
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-148-80	LCS	Aqueous	GC/MS AAA	01/30/15	02/03/15 03:08	150130L19
<u>Parameter</u>		Spike Added	Conc. Recove	red LCS %R	ec. %Rec	. CL Qualifiers
Naphthalene		2.000	1.510	75	21-13	3
2-Methylnaphthalene		2.000	1.537	77	21-14	0

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

Quality Control - LCS/LCSD

Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Project: Red Hill LTM 112066

Date Received:

01/29/15 15-01-1810

Work Order: Preparation:

EPA 5030C

Method:

GC/MS / EPA 8260B

Page 4 of 5

Quality Control Sample ID	Туре	Ma	trix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-13-057-76	LCS	Aq	ueous	GC/MS OO	01/31/15	01/31	/15 11:51	150131L001	
099-13-057-76	LCSD	Aq	ueous	GC/MS OO	01/31/15	01/31	/15 12:11	150131L001	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Acetone	50.00	82.13	164	N/A	N/A	40-140	N/A	0-20	Χ
Benzene	50.00	47.93	96	N/A	N/A	80-120	N/A	0-20	
Bromodichloromethane	50.00	48.08	96	N/A	N/A	75-120	N/A	0-20	
Bromoform	50.00	46.64	93	N/A	N/A	70-130	N/A	0-20	
Bromomethane	50.00	53.01	106	N/A	N/A	30-145	N/A	0-20	
2-Butanone	50.00	62.76	126	N/A	N/A	30-150	N/A	0-20	
Carbon Tetrachloride	50.00	45.54	91	N/A	N/A	65-140	N/A	0-20	
Chlorobenzene	50.00	51.78	104	N/A	N/A	80-120	N/A	0-20	
Chloroethane	50.00	44.69	89	N/A	N/A	60-135	N/A	0-20	
Chloroform	50.00	48.16	96	N/A	N/A	65-135	N/A	0-20	
Chloromethane	50.00	42.87	86	N/A	N/A	40-125	N/A	0-20	
Dibromochloromethane	50.00	51.24	102	N/A	N/A	60-135	N/A	0-20	
1,2-Dibromo-3-Chloropropane	50.00	38.87	78	N/A	N/A	50-130	N/A	0-20	
1,2-Dibromoethane	50.00	50.90	102	N/A	N/A	80-120	N/A	0-20	
1,2-Dichlorobenzene	50.00	51.42	103	N/A	N/A	70-120	N/A	0-20	
1,3-Dichlorobenzene	50.00	51.65	103	N/A	N/A	75-125	N/A	0-20	
1,4-Dichlorobenzene	50.00	51.48	103	N/A	N/A	75-125	N/A	0-20	
1,1-Dichloroethane	50.00	44.96	90	N/A	N/A	70-135	N/A	0-20	
1,2-Dichloroethane	50.00	53.05	106	N/A	N/A	70-130	N/A	0-20	
1,1-Dichloroethene	50.00	44.07	88	N/A	N/A	70-130	N/A	0-20	
c-1,2-Dichloroethene	50.00	47.25	95	N/A	N/A	70-125	N/A	0-20	
t-1,2-Dichloroethene	50.00	43.09	86	N/A	N/A	60-140	N/A	0-20	
1,2-Dichloropropane	50.00	46.41	93	N/A	N/A	75-125	N/A	0-20	
c-1,3-Dichloropropene	50.00	46.07	92	N/A	N/A	70-130	N/A	0-20	
t-1,3-Dichloropropene	50.00	45.03	90	N/A	N/A	55-140	N/A	0-20	
Ethylbenzene	50.00	49.99	100	N/A	N/A	75-125	N/A	0-20	
Methylene Chloride	50.00	44.21	88	N/A	N/A	55-140	N/A	0-20	
4-Methyl-2-Pentanone	50.00	43.41	87	N/A	N/A	60-135	N/A	0-20	
Styrene	50.00	48.69	97	N/A	N/A	65-135	N/A	0-20	
1,1,1,2-Tetrachloroethane	50.00	48.98	98	N/A	N/A	80-130	N/A	0-20	
1,1,2,2-Tetrachloroethane	50.00	41.18	82	N/A	N/A	65-130	N/A	0-20	
Tetrachloroethene	50.00	61.86	124	N/A	N/A	45-150	N/A	0-20	
Toluene	50.00	48.40	97	N/A	N/A	75-120	N/A	0-20	
1,2,4-Trichlorobenzene	50.00	50.89	102	N/A	N/A	65-135	N/A	0-20	
1,1,1-Trichloroethane	50.00	46.72	93	N/A	N/A	65-130	N/A	0-20	
Hexachloro-1,3-Butadiene	50.00	52.10	104	N/A	N/A	50-140	N/A	0-20	

RPD: Relative Percent Difference. C

CL: Control Limits

01/29/15

15-01-1810

EPA 5030C

Quality Control - LCS/LCSD

Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Date Received:

Work Order:

Preparation:

Method: GC/MS / EPA 8260B

Project: Red Hill LTM 112066 Page 5 of 5

<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
1,1,2-Trichloroethane	50.00	48.92	98	N/A	N/A	75-125	N/A	0-20	
Trichloroethene	50.00	49.55	99	N/A	N/A	70-125	N/A	0-20	
1,2,3-Trichloropropane	50.00	39.93	80	N/A	N/A	75-125	N/A	0-20	
Vinyl Chloride	50.00	46.46	93	N/A	N/A	50-145	N/A	0-20	
p/m-Xylene	100.0	99.55	100	N/A	N/A	75-130	N/A	0-20	
o-Xylene	50.00	49.14	98	N/A	N/A	80-120	N/A	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	41.61	83	N/A	N/A	65-125	N/A	0-20	
Gasoline Range Organics	1000	1097	110	1105	111	80-120	1	0-20	

Sample Analysis Summary Report

Work Order: 15-01-1810	Work Order: 15-01-1810				
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location	
EPA 6020	EPA 3005A Filt.	598	ICP/MS 04	1	
EPA 8015B (M)	EPA 3510C	960	GC 45	1	
EPA 8270C SIM PAHs	EPA 3510C	907	GC/MS AAA	1	
GC/MS / EPA 8260B	EPA 5030C	849	GC/MS OO	2	

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 15-01-1810 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
DL	The Detection Limit (DL) is the smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
ICH	Initial calibration verification recovery is above the control limit for this analyte.
ICJ	Initial calibration verification recovery is below the control limit for this analyte.
IH	Calibration verification recovery is above the control limit for this analyte.
IJ	Calibration verification recovery is below the control limit for this analyte.
J	Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
LOD	The Limit of Detection (LOD) is the smallest amount or concentration of a substance that must be present in a sample in order to be detected at 99% confidence level.
LOQ	The Limit of Quantitation (LOQ) is the lowest concentration of a substance that produces a quantitative result within specified limits of precision and bias.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
U	Undetected at Detection Limit (DL) and is reported as less than the Limit of Detection (LOD).
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unlace otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All OC results are

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Results to Contients

SHIP DATE: 28JAN15 ACTWGT: 52.4 LB CAD: /POS1525 DIMS: 24x15x13 IN

BILL RECIPIENT

UNITED STATES US

SMPLE CONTROL CALSCIENCE LABORTORIES 7440 LINCOLN WAY

GARDEN GROVE CA 92841

(714) 895 - 5494

nent

FedEx Express

TRK# 8059 2709 6814 ## MASTER ##

THU - 29 JAN AA STANDARD OVERNIGHT

WZ APVA

92841 CA-US SNA

MO

ORIGIN ID:HNLA

SHIP DATE: 28JAN15 ACTWGT: 51.3 LB CAD: /POS1525 DIMS: 24x15x13 IN

BILL RECIPIENT

UNITED STATES US

TO SMPLE CONTROL **GALSCIENCE LABORTORIES** 7440 LINCOLN WAY

GARDEN GROVE CA 92841
(714) 895-5494
POL: DEPT:

2 of 2 MPS# 7801 7093 8910 Mstr# 8059 2709 6814

THU - 29 JAN AA STANDARD OVERNIGHT

WZ APVA

92841 CA-US SNA

Calscience

WORK ORDER #: 15-01- 1 8 1 0

SAMPLE RECEIPT FORM

CLIENT: EST DA	TE: <u>01 /</u>	29/15							
TEMPERATURE: Thermometer ID: SC4 (Criteria: 0.0 °C – 6.0 °C, not frozen except sediment/tissue)									
Temperature 2 · 7 °C + 0.2 °C (CF) = 2 · 9 °C	ank 🗆 S	k ☐ Sample							
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)									
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of s	sampling.								
☐ Received at ambient temperature, placed on ice for transport by Courier									
Ambient Temperature: □ Air □ Filter		ked by: 15							
CUSTODY SEALS INTACT:	NAMES AND ADDRESS OF THE PROPERTY OF THE PROPE								
☑ Cooler ☐ ☐ No (Not Intact) ☐ Not Present ☐	N/A Check	ed by:							
Sample No (Not Intact) No Present		ed by: 911							
SAMPLE CONDITION: Yes	No	N/A							
Chain-Of-Custody (COC) document(s) received with samples									
COC document(s) received complete									
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.									
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.									
Sampler's name indicated on COC									
Sample container label(s) consistent with COC									
Sample container(s) intact and good condition									
Proper containers and sufficient volume for analyses requested									
Analyses received within holding time		о о по							
Aqueous samples received within 15-minute holding time									
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen ☐		ď							
Proper preservation noted on COC or sample container									
Unpreserved vials received for Volatiles analysis									
Volatile analysis container(s) free of headspace									
Tedlar bag(s) free of condensation									
Solid: 40zCGJ 160zCGJ 160zCG	ΓerraCores [®]								
Aqueous: ZVOA ZVOAh □VOAna₂ □125AGB □125AGBh □125AGBp ☑1AG	GB □1AGBi	na₂ □1AGBs							
□500AGB ☑500AGJ □500AGJs □250AGB □250CGB □250CGBs □1F									
□250PB									
Air: ☐Tedlar® ☐Canister Other: ☐ Trip Blank Lot#: ☐ Lab Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope	eled/Checke	d by: 977 /→ I by: 69/681							

Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaOH f: Filtered Scanned by: 681

Calscience

WORK ORDER #: 15-01- [] []

SAMPLE RECEIPT FORM Cooler ___ of ___

CLIENT: FGT	DATE:	01/30	/15
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)	Blank	☐ Samp	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same o		ling.	
☐ Received at ambient temperature, placed on ice for transport by Co	ourier.		
Ambient Temperature: Air Filter		Checked	by: <u>/5</u>
CUSTODY SEALS INTACT: Cooler		Checked b	
	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	. 🗗		
COC document(s) received complete	. Z *		
 □ Collection date/time, matrix, and/or # of containers logged in based on sample labels. □ No analysis requested. □ Not relinquished. □ No date/time relinquished. 			
Sampler's name indicated on COC	d		
Sample container label(s) consistent with COC			П
Sample container(s) intact and good condition	•		
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time			
Aqueous samples received within 15-minute holding time	ш	L.I	L.,)
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen			$ \emptyset$
Proper preservation noted on COC or sample container □ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	_ '		
Tedlar bag(s) free of condensation			
CONTAINER TYPE:			2
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores	; [®] □Terra(Cores [®] □_	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	edíagb □]1AGB na ₂ [⊒1AGBs
□500AGB ☑500AGJ □500AGJs □250AGB □250CGBs	□1PB □]1PB na □	1500PB
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □			
Air: Tedlar [®] Canister Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envi	Labeled/C	Checked by:	977

Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaOH f: Filtered Scanned by: 68

RAW DATA SHEET FOR METHOD: EPA 8015B (M)

WORK ORDER: 15-01-1810

GC 45

ANALYZED BY:

960

INSTRUMENT: **EXTRACTION:**

EPA 3510C

D/T ANALYZED:

2015-02-03 03:03

D/T EXTRACTED: 2015-02-02 00:00

REVIEWED BY: D/T REVIEWED:

DATA FILE:

W:\GC 45\GC 45 DATA\2015\150202\15020252.D\15020252 ~

2

UNITS:

CLIENT SAMPLE NUMBER: ES126

LCS/MB BATCH:

150202B09

SAMPLE VOLUME / WEIGHT:

DEFAULT: 500.00 ml / ACTUAL: 500.00 ml /

MS/MSD BATCH:

150202809

FINAL VOLUME / WEIGHT:

DEFAULT: 5.00 ml / ACTUAL: 2.50 ml

ug/L

ADJUSTMENT RATIO TO PF:

0.50

COMMENT:

Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are

qualified with a "J" flag. TPH as Diesel is quantified in the carbon range C10-C28.

COMPOUND TPH as Diesel INI. CONC DF

220000

CONC

DL

LOD

10

QUAL

1.00 /

1100

2.9

LOQ 25

b

Area Percent Report

Data File Name : W:\GC_45\GC 45 DATA\2015\150202\15020252.D

Page Number : 1

Operator : Vial Number : Vial 52

Instrument : GC 45 Injection Number : 1 Sample Name : 15-01-1810-2 Sequence Line : 52

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 03:03 am

Report Created on: 03 Feb 15 03:36 pm Analysis Method : 8015B.MTH

Software Revision: Rev. B.03.02 [341] Copyright @ Agilent Technologies

Sig. 1 in W:\GC 45\GC 45 DATA\2015\150202\ ->

Pk	Ret Time	Area	Height	Peak	Width	Response %	
		NAME WAS STORE THE THE SECURITY WORDS STORE SHOULD ARROW SHOULD S					
1	5.334	621.38	439	BB	0.022	100.000	
2	0.000	0.00	0		0.000	0.000	

Total area = 621.38 0.00

Data File Name : W:\GC 45\GC 45 DATA\2015\150202\15020252.D

Page Number : 2

Operator : Vial Number : Vial 52

Instrument : GC 45 Injection Number : 1 Sample Name : 15-01-1810-2 Sequence Line : 52

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 03:03 am

Report Created on: 03 Feb 15 03:36 pm Analysis Method : 8015B.MTH

Data File Name : W:\GC 45\GC 45 DATA\2015\150202\15020252.D

Page Number : 1

Operator : 682 Vial Number : Vial 52

Instrument : GC 45 Injection Number : 1 Sample Name : 15-01-1810-2 Sequence Line : 52

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 03:03 am

Report Created on: 03 Feb 15 03:33 pm Analysis Method : 8015B.MTH

Sig. 1 in W:\GC 45\GC 45 DATA\2015\150202\ ->

	Ret Time	Area	Height			Response %
		:				
1	1.941	30.25		VV	0.029	0.626
2	2.022	61.89		VV	0.020	1.281
3	2.056	73.99		VV	0.035	1.531
4	2.164	169.21		VV	0.028	3.502
5	2.212	54.13		VV	0.024	1.120
6	2.252	103.98		VV	0.026	2.152
. 7	2.317	149.21		VV	0.041	3.088
8	2.381	67.99	41	VV	0.023	1.407
9	2.451	531.93	328	VV	0.024	11.008
10	2.539	80.44	37	VV	0.033	1.665
11	2.593	123.19	41	VV	0.041	2.549
12	2.638	84.03	41	VV	0.030	1.739
13	2.714	239.73	65	VV	0.053	4.961
14	2.766	280.11	144	VV	0.029	5.797
15	2.851	308.45	59	VV	0.065	6.383
16	2.939	173.99	60	VV	0.039	3,601
17	3.010	250.52	102	VV	0.035	5.184
18	3.058	201.49	58	VV	0.045	4.170
19	3.161	182.10	36	VV	0.065	3.768
20	3.238	54.84	28	VV	0.027	1.135
21	3.301	196.53	36	VV	0.068	4.067
22	3.379	43.41	23	VV	0.026	0.898
23	3.420	94.19	23	VV	0.053	1.949
24	3.497	70.89	23	VV	0.043	1.467
25	3.558	113.87	25	VV	0.067	2.357
26	3.641	62.78	21	VV	0.040	1.299
27	3.684	86.14	22	VV	0.050	1.783
28	3.764	65.73	15	VV	0.056	1.360
29	3.848	24.41	12	VV	0.027	0.505
30	3.882	37.99	12	VV	0.041	0.786
31	3.941	42.34	12	VV	0.046	0.876
32	4.013	117.83	10	VV	0.147	2.438
33	4.713	11.50	2	VV	0.079	0.238
34	4.892	2.55	1	VV	0.038	0.053
35	4.943	3.39	1	VV	0.047	0.070
36	5.036	5.04	1	VV	0.060	0.104
37	5.186	2.58	1	VV	0.040	0.053

Data File Name : W:\GC_45\GC 45 DATA\2015\150202\15020252.D

Page Number : 2

Operator : 682 Vial Number : Vial 52

Instrument : GC 45 Injection Number : 1 Sample Name : 15-01-1810-2 Sequence Line : 52

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 03:03 am

Report Created on: 03 Feb 15 03:33 pm Analysis Method : 8015B.MTH

Software Revision: Rev. B.03.02 [341] Copyright © Agilent Technologies

Pk	Ret Time	Area	Height	Peak	Width	Response %
						-
38	5.238	1.68	1	VV	0.041	0.035
39	5.333	627.84	440	VV	0.024	12.993

Total area = 4832.19

Data File Name : W:\GC 45\GC 45 DATA\2015\150202\15020252.D

Page Number : 3

Operator : 682

Instrument : GC 45
Sample Name : 15-01-1810-2

Vial Number : Vial 52

Injection Number : 1
Sequence Line : 52

Instrument Method: C:\CHEM32\1\METHODS\

Acquired on :

: 03 Feb 15 03:03 am

Report Created on: 03 Feb 15 03:33 pm

Analysis Method: 8015B.MTH

RAW DATA SHEET FOR METHOD: EPA 8015B (M)

WORK ORDER:

15-01-1810

INSTRUMENT:

GC 45

EXTRACTION:

EPA 3510C

D/T EXTRACTED: 2015-02-02 00:00

ANALYZED BY:

D/T ANALYZED:

2015-02-03 03:24

960

REVIEWED BY: D/T REVIEWED:

W:\GC 45\GC 45 DATA\2015\150202\15020253.D\15020253

DATA FILE: 3

CLIENT SAMPLE NUMBER: ES127

LCS/MB BATCH: MS/MSD BATCH: 150202B09 150202S09

ug/L

SAMPLE VOLUME / WEIGHT:

DEFAULT: 500.00 ml / ACTUAL: 500.00 ml /

FINAL VOLUME / WEIGHT:

DEFAULT: 5.00 ml / ACTUAL: 2.50 ml

ADJUSTMENT RATIO TO PF:

0.50

COMMENT:

UNITS:

Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are

qualified with a "J" flag. TPH as Diesel is quantified in the carbon range C10-C28.

COMPOUND

INI. CONC

DF

CONC

DL 2.9 LOD

QUAL

TPH as Diesel

330000

1.00 /

1650

10

LOQ 25

b

Area Percent Report

Data File Name : W:\GC_45\GC 45 DATA\2015\150202\15020253.D

Page Number : 1

Operator : Vial Number : Vial 53

Instrument : GC 45 Injection Number : 1 Sample Name : 15-01-1810-3 Sequence Line : 53

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 03:24 am

Report Created on: 03 Feb 15 03:36 pm Analysis Method : 8015B.MTH

Software Revision: Rev. B.03.02 [341] Copyright © Agilent Technologies

Sig. 1 in W:\GC 45\GC 45 DATA\2015\150202\ \rightarrow

Pk	Ret Time	Area	Height	Peak	Width	Response %
						.]
1	5.330	823.29	588	BB	0.021	100.000
2	0.000	0.00	0		0.000	0.000

Total area = 823.29 0.00

Data File Name : W:\GC_45\GC 45 DATA\2015\150202\15020253.D

Page Number : 2

Operator : Vial Number : Vial 53

Instrument : GC 45 Injection Number : 1 Sample Name : 15-01-1810-3 Sequence Line : 53

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 03:24 am

Report Created on: 03 Feb 15 03:36 pm Analysis Method : 8015B.MTH

Data File Name : W:\GC 45\GC 45 DATA\2015\150202\15020253.D

Page Number : 1

Operator : 682 Vial Number : Vial 53

Instrument : GC 45 Injection Number : 1 Sample Name : 15-01-1810-3 Sequence Line : 53

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 03:24 am

Report Created on: 03 Feb 15 03:33 pm Analysis Method : 8015B.MTH

Software Revision: Rev. B.03.02 [341] Copyright © Agilent Technologies

Sig. 1 in W:\GC 45\GC 45 DATA\2015\150202\ \rightarrow

Pk	Ret Time	Area	Height	Peak		Response %
1	1.941	38.91	19	VV	0.029	0.545
2	2.021	139.02	80	VV	0.025	1.947
3	2.086	56.47	34	VV	0.024	0.791
4	2.165	242.37	135	VV	0.029	3.394
5	2.212	75.92	48	VV	0.024	1.063
6	2.251	147.24	86	VV	0.025	2.062
7	2.317	196.66	71	VV	0.038	2.754
8	2.381	97.69	60	VV	0.023	1.368
9.	2.451	685,03	451	VV	0.024	9.592
10	2.539	162.78	54	VV	0.043	2.279
11	2.593	176.48	62	VV	0.038	2.471
12	2.638	127.59	61	VV	0.030	1.787
13	2.714	329.70	94	VV	0.050	4.617
14	2.766	386.94	193	VV	0.029	5.418
15	2.851	475.58	92	VV	0.064	6.660
16	2.939	264.81	93	VV	0.039	3.708
17	3.010	367.87	158	VV	0.032	5.151
18	3.057	314.31	90	VV	0.047	4.401
19	3.159	289.92	58	VV	0.065	4.060
20	3.237	90.15	47	VV	0.028	1.262
21	3.300	309.70	58	VV	0.068	4.337
22	3.377	76.47	38	VV	0.028	1,071
23	3.429	162.98	39	VV	0.053	2.282
24	3.496	114.48	39	VV	0.040	1.603
25	3.554	193.72	45	VV	0.057	2.713
26	3.641	105.07	36	VV	0.039	1.471
27	3.684	373.51	39	VV	0.118	5.230
28	3.939	74.80	22	VV	0.045	1.047
29	4.007	196.88	15	VV	0.157	2.757
30	4.711	15.09	2	VV	0.097	0.211
31	4.884	3.55	1	VV	0.047	0.050
32	4.938	4.38	1	VV	0.046	0.061
33	5.032	6.89	2	VV	0.058	0.097
34	5.181	4.24	1	VV	0.045	0.059
35	5.329	834.08	590	VV	0.023	11.680

Total area =

Area Percent Report

Data File Name : W:\GC_45\GC 45 DATA\2015\150202\15020253.D

Page Number : 2

Operator : 682 Vial Number : Vial 53

Instrument : GC 45 Injection Number : 1
Sample Name : 15-01-1810-3 Sequence Line : 53

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 03:24 am

Report Created on: 03 Feb 15 03:33 pm Analysis Method : 8015B.MTH

Software Revision: Rev. B.03.02 [341] Copyright © Agilent Technologies

7141.30

Data File Name : W:\GC 45\GC 45 DATA\2015\150202\15020253.D

Page Number : 3

Operator : 682 Vial Number : Vial 53

Instrument : GC 45 Injection Number : 1 Sample Name : 15-01-1810-3 Sequence Line : 53

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 03:24 am

Report Created on: 03 Feb 15 03:33 pm Analysis Method : 8015B.MTH

RAW DATA SHEET FOR METHOD: EPA 8015B (M)

WORK ORDER: 15-01-1810 ANALYZED BY: 960

NSTRUMENT: GC 45 D/T ANALYZED: 2015-02-03 03:44

<u>EXTRACTION:</u> EPA 3510C , <u>REVIEWED BY:</u> <u>D/T EXTRACTED:</u> 2015-02-02 00:00 , <u>D/T REVIEWED:</u>

DATA FILE: W:\GC 45\GC 45 DATA\2015\150202\15020254.D\15020254

4 <u>CLIENT SAMPLE NUMBER:</u> ES123

LCS/MB_BATCH: 150202B09 SAMPLE VOLUME / WEIGHT: DEFAULT: 500.00 ml / ACTUAL: 500.00 ml /

MS/MSD BATCH: 150202S09 FINAL VOLUME / WEIGHT: DEFAULT: 5.00 ml / ACTUAL: 2.50 ml

UNITS: ug/L ADJUSTMENT RATIO TO PF: 0.50

COMMENT: Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are

qualified with a "J" flag. TPH as Diesel is quantified in the carbon range C10-C28.

 COMPOUND
 INI. CONC
 DF
 CONC
 DL
 LOQ
 QUAL

 TPH as Diesel
 7750
 1.00 ×
 38.7
 2.9
 10
 25
 b

Area Percent Report

Data File Name : W:\GC 45\GC 45 DATA\2015\150202\15020254.D

Page Number : 1

Operator : Vial Number : Vial 54

Instrument : GC 45 Injection Number : 1
Sample Name : 15-01-1810-4 Sequence Line : 54

Instrument Method: C:\CHEM32\1\METHODS\ --

Acquired on : 03 Feb 15 03:44 am

Report Created on: 03 Feb 15 03:36 pm Analysis Method : 8015B.MTH

Software Revision: Rev. B.03.02 [341] Copyright © Agilent Technologies

Sig. 1 in W:\GC 45\GC 45 DATA\2015\150202\ \rightarrow

Рk	Ret Time	Area	Height	Peak	Width	Response &
1	5.337	571.96	386	ВВ	0.023	100.000
2	0.000	0.00	0		0.000	0.000

Total area = 571.96 0.00

Data File Name : W:\GC 45\GC 45 DATA\2015\150202\15020254.D

Page Number : 2

Operator : Vial Number : Vial 54

Instrument : GC 45 Injection Number : 1 Sample Name : 15-01-1810-4 Sequence Line : 54

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 03:44 am

Report Created on: 03 Feb 15 03:36 pm Analysis Method : 8015B.MTH

Data File Name : W:\GC_45\GC 45 DATA\2015\150202\15020254.D

Vial Number : Vial 54

: 1
: 682
Instrument : GC 4
Sample Name Injection Number: 1 : GC 45 Sequence Line : 54 : 15-01-1810-4

Instrument Method: C:\CHEM32\1\METHODS\

Acquired on : 03 Feb 15 03:44 am

Analysis Method : 8015B.MTH Report Created on: 03 Feb 15 03:34 pm

Software Revision: Rev. B.03.02 [341] Copyright © Agilent Technologies

Sig. 1 in W:\GC 45\GC 45 DATA\2015\150202\ \rightarrow

Pk	Ret Time	Area	Height	Peak	Width	Response %
!		MAN, LANS SING SING SING SING SING SING SING SI			-	.
1	2.361	0.67	0	BV	0.071	0.093
2	2.753	2.93	0	VV	0.184	0.407
3	2.896	2.31	0	VV	0.066	0.321
4	2.964	1.47	0	VV	0.053	0.204
5	3.167	5.22	1	VV	0.123	0.724
б	3.333	6.09	1	VV	0.110	0.845
7	3.499	4.24	1	VV	0.088	0.589
8	3.857	17.23	1	VV	0.166	2.394
9	4.023	15.81	3	VV	0.073	2.195
10	4.302	29.63	2	VV	0.215	4.115
11	4.408	13.29	2	VV	0.106	1.845
12	4.580	11.66	1	VV	0.097	1.619
13	4.715	13.16	1	VB	0.123	1.828
14	4.895	3.66	1	BV	0.043	0.508
15	4.946	4.49	1	VV	0.051	0.623
16	5.039	6.60	1	VV	0.068	0.916
17	5.189	3.94	1	VV	0.059	0.547
18	5.337	577.68	386	VV	0.024	80.226

Total area = 720.06

Data File Name : W:\GC 45\GC 45 DATA\2015\150202\15020254.D

Page Number : 2

Operator : 682 Vial Number : Vial 54

Instrument : GC 45 Injection Number : 1 Sample Name : 15-01-1810-4 Sequence Line : 54

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 03:44 am

Report Created on: 03 Feb 15 03:34 pm Analysis Method : 8015B.MTH

RAW DATA SHEET FOR METHOD: EPA 8015B (M)

WORK ORDER:

099-15-516

INSTRUMENT:

GC 45

EXTRACTION:

EPA 3510C /

D/T EXTRACTED: 2015-02-02 00:00

ANALYZED BY:

D/T ANALYZED:

2015-02-03 00:43 /

960

REVIEWED BY:

D/T REVIEWED:

DATA FILE:

W:\GC 45\GC 45 DATA\2015\150202\15020245.D\15020245

MB

UNITS:

CLIENT SAMPLE NUMBER: Method Blank

LCS/MB BATCH: MS/MSD BATCH:

150202B09

ug/L

SAMPLE VOLUME / WEIGHT:

DEFAULT: 500.00 ml / ACTUAL: 500.00 ml

FINAL VOLUME / WEIGHT:

DEFAULT: 5.00 ml / ACTUAL: 2.50 ml

ADJUSTMENT RATIO TO PF:

0.50

COMMENT:

COMPOUND

INI. CONC DF

CONC

DL

LOD

LOQ

QUAL

TPH as Diesel

0.000

1.00 /

ND

2.9

10

25

1.13

Data File Name : W:\GC 45\GC 45 DATA\2015\150202\15020245.D

Page Number : 2

Operator : 682

Instrument : GC 45

Sample Name : MB 15020209/10/11

Vial Number : Vial 45

Injection Number : 1
Sequence Line : 45

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 00:43 am

Report Created on: 03 Feb 15 03:32 pm Analysis Method : 8015B.MTH

CONTINUING CALIBRATION VERIFICATION QUALITY CONTROL SHEET FOR METHOD: EPA 8015B (M)

	2 11:34	3 00:03			STATUS	PASS
096	2015-02-02 11:34				CCV %D CL	0-15
ANALYZED BY: D/T ANALYZED:	INITIAL	CCV:	REVIEWED BY:		CCV %D	-
PAR				5	CCV CONC	DESERVATION ASSOCIATION ASSOCI
					AMOUNT	AMARAMAN AM
				20243 /	CCV RF	0.019
)20243.D\150	AVG RF	0.019
				\150202\150	MIN RF	0.00
363-6279				W:\GC_45\GC 45 DATA\2015\150202\15020243.D\15020243	COMP TYPE CALIB MODEL	Avg Resp
099-15-515-	1502021018	150202A090	GC 45	W:\GC_45\@	COMP TYPE	O
CCV WORK ORDER: 099-15-515-363-6279 BATCH ID:	INITIAL	CCV:	INSTRUMENT:	DATA FILE:	COMPOUND NAME	TPH as Diesel

STATUS

MIN RF: Method Specified Minimum Response Factor

Data File Name : W:\GC 45\GC 45 DATA\2015\150202\15020243.D

Page Number : 3

Operator : 682 Vial Number : Vial 43

Instrument : GC 45 Injection Number : 1
Sample Name : D400 C28 50 L012815D Sequence Line : 43

Instrument Method: C:\CHEM32\1\METHODS\ ->

Acquired on : 03 Feb 15 00:03 am

Report Created on: 03 Feb 15 03:32 pm Analysis Method : 8015B.MTH

APPENDIX D Historical Groundwater Exceedance Trends

Data points for 2/17/2005 through 9/8/2005 and 12/6/2005 are the average of the primary and duplicate samples.

Possible laboratory contamination for 10/22/2012, 10/21/2013, and 1/28/2014 sampling events.

Unfilled boxes indicate non-detections. Method reporting limits (MRLs) are shown for February 2005, method detection limits (MDLs) are shown for June 2005 through October 2009, and limits of detection (LODs) are shown from January 2010 on.

The Site-Specific Risk-Based Level (SSRBL) is 4,500 µg/L.

Numerous sample results had a chromatographic pattern that did not match the calibration standard. The relatively high TPH-d values may not necessarily be indicative that there is diesel fuel or other petroleum products in the well.

Data points for 2/17/2005 through 9/8/2005 and 12/6/2005 are the average of the primary and duplicate samples.

Unfilled boxes indicate non-detections. MDLs are shown for June 2005 through October 2009, and LODs are shown from January 2010 on.

Data points for 9/20/2005 through 4/21/2014 are the average of the primary and duplicate samples.

Possible laboratory contamination for 10/21/2013 and 1/28/2014 sampling events.

Unfilled boxes indicate non-detections. MDLs are shown for July 2009, and LODs are shown for September 2005 and from July 2011 on.

Primary sample results are shown for 1/26/2012 and 7/18/2012; all other concentrations are the average of the primary and duplicate sample results.

Data points for 9/20/2005 through 4/21/2014 are the average of the primary and duplicate samples.

Numerous sample results had a chromatographic pattern that did not match the calibration standard. The relatively high TPH-d values may not necessarily be indicative that there is diesel fuel or other petroleum products in the well.

Data points for 9/20/2005 through 4/21/2014 are the average of the primary and duplicate samples.

Unfilled boxes indicate non-detections. MDLs are shown for July 2006 through October 2009, and LODs are shown from January 2010 on.

Data points for 9/20/2005 and 3/27/2007 through 4/21/2014 are the average of the primary and duplicate samples.

Data points for 9/20/2005 and 3/27/2007 through 4/21/2014 are the average of the primary and duplicate samples.

Possible laboratory contamination for 10/21/2013 and 1/28/2014 sampling events. Unfilled boxes indicate non-detections. LODs are shown.

Possible laboratory contamination for 10/21/2013 and 1/28/2014 sampling events.

Unfilled boxes indicate non-detections. MDLs are shown for July 2006 through October 2009, and LODs are shown for September 2005 and from January 2010 on.

The Site-Specific Risk-Based Level (SSRBL) is 4,500 µg/L.

Unfilled boxes indicate non-detections. MDLs are shown for December 2006 through October 2009, and LODs are shown for September 2005 and from January 2010 on.

Numerous sample results had a chromatographic pattern that didn't match the calibration standard. The relatively high TPH-d values may not necessarily be indicative that there is diesel fuel or other petroleum products in the well.

Data point for 7/17/2012 is the average of the primary and duplicate samples.

Unfilled boxes indicate non-detections. MDLs are shown for July and October 2009, and LODs are shown from January 2010 on.

Possible laboratory contamination for 10/22/2012, 10/22/2013, and 1/29/2014 sampling events.

Data point for 7/17/2012 is the average of the primary and duplicate samples.

Unfilled boxes indicate non-detections. LODs are shown.

Numerous sample results had a chromatographic pattern that did not match the calibration standard. The relatively high TPH-d values may not necessarily be indicative that there is diesel fuel or other petroleum products in the well.

Unfilled boxes indicate non-detections. MRLs are shown for February 2005, MDLs are shown for June 2005 through October 2009, and LODs are shown from January 2010 on. Possible laboratory contamination for 10/22/2012, 10/22/2013, and 1/29/2014 sampling events.

Unfilled boxes indicate non-detections. MRLs are shown for February 2005, MDLs are shown for December 2005 through October 2009, and LODs are shown from January 2010 on. Laboratory data rejected for 1/15/2008 sampling event.

Numerous sample results had a chromatographic pattern that did not match the calibration standard. The relatively high TPH-d values may not necessarily be indicative that there is diesel fuel or other petroleum products in the well.

APPENDIX E

Cumulative Groundwater Results (included on attached CD)

